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ABSTRACT 

Ground-based lek surveys have traditionally been used to index trends in prairie 

grouse populations (Centrocercus and Tympanuchus spp.).  However, indices of 

abundance or density can be fundamentally flawed and techniques that account for 

incomplete detection should be used.  Distance sampling is a common technique used to 

estimate the density and abundance of animal populations and has been used with aerial 

surveys to monitor avian populations.  With an increase in renewable energy 

development in native prairies and sagebrush steppe, there is a greater need to effectively 

monitor prairie grouse populations.  One such species, the lesser prairie-chicken (LPC; T. 

pallidicinctus), has faced significant population declines and is thus, a species of 

conservation concern.  In addition, much of the current and proposed wind energy 

development in the Great Plains overlaps some of the extant LPC distribution and few 

peer-reviewed studies have been conducted to investigate this potential disturbance to 

LPCs.  Hierarchical distance sampling models can relate LPC lek density to landscape 

features and help predict the potential impact from wind and other energy development 

on lek density.  Thus, the main objectives of our study were to estimate lek density in our 

sampling frame and to model anthropogenic and landscape features associated with lek 

density.  We accomplished this by flying helicopter lek surveys for 2 field seasons and 

employing an aerial line-transect method developed at Texas Tech University. 

We inventoried 208, 7.2 km × 7.2 km survey blocks and detected 71 new leks, 25 

known leks, and observed 5 detections outside the current LPC range.  We estimated 2.0 

leks/100 km2 (90% CI = 1.4–2.7 leks/100 km2) and 12.3 LPCs/100 km2 (90% CI = 8.5–
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17.9 LPCs/100 km2) for our sampling frame.  Our state-wide abundance estimates were 

293.6 leks (90% CI = 213.9–403.0 leks) and 1,822.4 LPCs (90% CI = 1,253.7–2,649.1 

LPCs).  Our best model indicated lek size and lek type (wi = 0.235) influenced lek 

detectability.  Lek detectability was greater for larger leks and natural leks rather than 

man-made leks.  We used hierarchical distance sampling to build spatially-explicit 

models of lek density and landscape features.  Our most competitive model included 

percent shrubland + paved road density + unpaved road density (AIC = 938.926, wi = 

0.826).  Based on the spatially-explicit model, we estimated 248.5 leks (cv = 0.136) for 

our sampling frame.  Lek density peaked when ≈50% of the landscape was composed of 

shrubland patches (i.e., shrubs <5 m tall comprising ≥20% of the total vegetation).  This 

model also indicated an inverse relationship between lek density and paved and unpaved 

road densities.  Our state-wide survey efforts provide wildlife managers and biologists 

with population estimates, new lek locations, and indicate landscape features that are 

related to lek density.  Our spatially-explicit models predicted lek density based on 

percent shrubland and paved and unpaved road densities which can be used to predict 

how lek density may change in response to changes in habitat conditions and road 

densities.  
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CHAPTER 1 

INTRODUCTION 
 
 

Ground-based lek surveys have traditionally been used to index trends in prairie 

grouse (Centrocercus and Tympanuchus spp.) populations (Cannon and Knopf 1981, 

Martin and Knopf 1981, Schroeder et al. 1992).  However, indices of abundance or 

density can be fundamentally flawed because they often have poorly defined frames of 

inference, lack use of detection probabilities, or have poor sampling designs (Applegate 

2000, Anderson 2001, Walsh et al. 2004, McRoberts et al. 2011a).  Therefore, well-

designed monitoring protocols that incorporate techniques which account for incomplete 

detection and have robust sampling designs should be used.  Distance sampling is a 

common technique used to estimate the density and abundance of animal populations 

(Buckland et al. 2001) and has been used with aerial surveys to monitor avian 

populations (Butler et al. 2007, Rusk et al. 2007, Butler et al. 2008, McRoberts et al. 

2011a).  Recent advancements in analysis techniques for distance sampling surveys can 

provide managers with the ability to relate abundance with spatially-explicit covariates 

such as landscape or anthropogenic features (Hedley and Buckland 2004, Royle et al. 

2004).  These techniques allow for more hypothesis-driven monitoring that informs 

conservation decisions and actions (Nichols and Williams 2006). 

With an increase in energy development in native prairies and sagebrush steppe 

(Hagen 2010, Naugle et al. 2011, Jarnevich and Laubhan 2011), there is a greater need to 

effectively monitor prairie grouse populations.  One such species, the lesser prairie-
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chicken (LPC; Tympanachus pallidicinctus), has faced significant population declines 

and is currently a candidate species for Federal protection under the Endangered Species 

Act (ESA; Hagen et al. 2004).  Much of the current and proposed wind energy 

development in the Great Plains overlaps some of the extant LPC distribution and few 

peer-reviewed studies have been conducted to investigate this potential disturbance 

(Kuvlesky et al. 2007, Hagen 2010).  Spatially-explicit models can relate lek density to 

landscape features and help predict the potential impact from energy development on lek 

density (Hedley and Buckland 2004, Jarnevich and Laubhan 2011).  Because wind 

energy development in the Texas Panhandle is imminent (Electric Reliability Council of 

Texas [ERCOT] 2006) and this development overlaps LPC occurrence in Texas (Brennan 

et al. 2009), the main objectives of our study were to estimate lek density and model 

anthropogenic disturbance and vegetative features associated with lek density.  We 

accomplished this by flying helicopter-based surveys of leks for 2 field seasons in the 

Panhandle and employing a line-transect method (McRoberts et al. 2011a, b). 

 
Lesser Prairie-Chickens 

The occupied range of LPCs has been reduced by >90% and LPCs now inhabit 

fragments of native grassland in Colorado, Kansas, New Mexico, Oklahoma, and Texas 

(Fig. 1.1; Taylor and Guthery 1980).  The reduced distribution of LPCs has been 

attributed to direct habitat loss from conversion of native grasslands for agriculture, 

livestock overgrazing, and encroachment of woody plants due to fire suppression, and 

indirect habitat loss from disturbance of oil and natural gas exploration and development 
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(Taylor and Guthery 1980, Braun et al. 1994, Applegate and Riley 1998, Hagen et al. 

2004). 

As a result, the LPC was petitioned for listing under the Endangered Species Act 

as threatened or endangered in 1995 and in 1998 the U.S. Fish and Wildlife Service 

(USFWS) determined that listing was “warranted, but precluded” (USFWS 1998).  

Recently, USFWS upgraded the listing priority for the LPC from a Priority 8 to a Priority 

2 (USFWS 2008) suggesting that listing may be imminent (USFWS 1983).  The listing 

priority was upgraded due to an “increased magnitude of threats” from oil and wind 

energy development, reversion of Conservation Reserve Program (CRP) to cropland, 

overgrazing, herbicide use in shinnery oak (Quercus havardii) habitat, mesquite 

(Prosopis glandulosa) and juniper (Juniperus virginiana) invasion, and habitat 

fragmentation (USFWS 2008).  Given the LPC’s conservation status, McRoberts et al. 

(2011a) identified a need for effective monitoring of LPC populations and the ability to 

find new leks, and they suggested the use of helicopter lek surveys to accomplish both 

needs. 

 

Energy Development 

An increase in renewable and non-renewable energy development could threaten 

the prairie grouse that inhabit native prairies and sagebrush steppe where there is high 

potential for wind and geothermal energy production and natural gas extraction (Hagen 

2010, Jarnevich and Laubhan 2011, Naugle et al. 2011).  For example, Texas currently 

produces the most wind power in the United States (e.g., 22.0% of the nation’s total) 
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(American Wind Energy Association [AWEA] 2012) and 5 Competitive Renewable 

Energy Zones (CREZ) were designated in west Texas to encourage further wind energy 

development (ERCOT 2006).  Transmission lines are already being constructed to deliver 

electricity from these zones to urban customers (ERCOT 2006) and the 2 CREZs in the 

Texas Panhandle overlap approximately 27% (3,288 km2) of LPC occupied range (Fig. 

1.2). 

Several recent studies have examined the impacts of energy development on 

prairie grouse and many of these studies demonstrate avoidance of anthropogenic 

structures and human disturbance that leads to indirect habitat loss and fragmentation 

(Holloran 2005, Pitman et al. 2005, Walker et al. 2007, Doherty et al. 2008, Pruett et al. 

2009a, b).  For example, Holloran (2005) examined natural gas field development on 

greater sage-grouse (GSG; C. urophasianus) habitat selection, breeding behavior, and 

population dynamics in western Wyoming.  He found that nesting hens avoided areas 

with a high density of active wells, the number of males displaying at leks decreased with 

increasing gas field-related disturbances around leks, and leks surrounded by gas field 

development had low juvenile male recruitment and high displacement of adult males.  In 

a southwestern Kansas study, LPC nests were located further than expected from 

transmission lines or improved roads even though otherwise-suitable habitat surrounded 

these features (Pitman et al. 2005).  Walker et al. (2007) examined GSG lek persistence 

in coal-bed natural gas (CBNG) fields and observed a greater decline in male attendance 

at leks and a decline in number of active leks compared to areas outside of CBNG fields.  

Doherty et al. (2008) also examined the impact of CBNG development on GSG and built 
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a spatial model to identify suitable winter habitat.  They found that GSG hens avoided 

CBNG development surrounded by suitable winter habitat. 

Few peer-reviewed studies have investigated the potential impacts from 

constructing wind facilities and associated infrastructure on prairie grouse (Kuvlesky et 

al. 2007, Hagen 2010).  After wind facility construction at 3 sites in Austria, local black 

grouse (Lyrurus tetrix) populations showed declining trends (Zeiler and Grünschachner-

Berger 2009).  Pruett et al. (2009a) examined the avoidance behavior of LPCs and greater 

prairie-chickens (GPC; T. cupido) to power lines and highways in northwestern and 

northeastern Oklahoma, respectively.  Radio-marked LPCs avoided the power line in the 

study area by ≥100 m and few nests were found within 2 km of the power line.  Greater 

prairie-chickens also appeared to avoid the power line in the study area and only 1 nest 

was found within 2 km.  A large-scale study is currently being conducted in Wyoming to 

assess pre- and post-construction impacts of wind energy development on GSG habitat 

use at 3 wind facility sites (Johnson et al. 2011).  A pre- and post-construction study was 

recently completed at 1 large wind facility in Kansas to examine impacts on GPCs, but 

results are not yet available (J. Pitman, personal communication, Kansas Department of 

Wildlife, Parks, and Tourism). 

 

Population Monitoring 
 

Ground-based lek surveys and lek counts have been used for many years to index 

population trends in prairie grouse populations (Cannon and Knopf 1981, Martin and 

Knopf 1981, Schroeder et al. 1992, Walsh et al. 2004, McRoberts et al. 2011a).  Lek 
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surveys are used to locate and count the number of active leks in a particular area, 

whereas lek counts measure the number of individuals at selected leks (McRoberts et al. 

2011b).  However, indices derived from lek surveys and counts can be fundamentally 

flawed due to incomplete detectability, changes in detection probability from year to 

year, and convenience-based sampling (e.g., road-based surveys; Applegate 2000, 

Anderson 2001, Walsh et al. 2004).  Further, lek surveys conducted from the ground 

require many person-hours to cover large areas to search for leks (Grensten 1987, Martin 

and Knopf 1981, Schroeder et al. 1992) and road-based lek surveys may yield biased 

conclusions due to  non-random sampling (Applegate 2000, McRoberts et al. 2011a).  

Other methods, such as mark-resight or aircraft-based surveys that deploy robust 

sampling designs and distance sampling to account for incomplete detection, may be used 

to obtain more accurate estimates of prairie grouse abundance or density (Walsh et al. 

2004, McRoberts et al. 2011a). 

Distance sampling is a common technique used to estimate the density and 

abundance of wildlife populations (Buckland et al. 2001).  Density estimates for a study 

area are derived by estimating detection functions, which account for animals not 

detected in the survey area (Thompson 2002).  Detection is modeled as a function of 

distance from detected objects to randomly-positioned transects or points and other 

covariates (Thompson et al. 1998, Buckland et al. 2001).  Line transect surveys yield 

accurate density estimates when critical assumptions of distance sampling are met (e.g., 

objects are detected on the transect line with certainty, objects are detected at their initial 

location, detected objects are independent, and distance measurements are recorded 
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without error; Buckland et al. 2001, Fewster et al. 2008).  Studies should be designed to 

satisfy these assumptions by using random placement of transects throughout the study 

area, stratification of study area, obtaining adequate sample size, and providing a strict 

survey protocol for observers to follow (Buckland et al. 2001, Fewster et al. 2008). 

If individuals are spatially clumped, the sampling frame may be stratified in 

which similar or adjacent sampling units are grouped together (e.g., similar habitat 

conditions, densities, or management objectives); random samples are then drawn from 

each stratum (Thompson et al. 1998).  Stratification can also be a useful technique for 

targeting survey effort to areas important for management or conservation.  Stratification 

usually results in higher precision, reduced bias in density estimates, and greater spatial 

coverage of the sampling frame (Thompson et al. 1998, Buckland et al. 2001).  There are 

several ways to distribute sampling units among strata based on sampling costs, size of 

each stratum, and other sources of variation among strata.  Strata-specific density 

estimates are often useful metrics, but density within the entire sampling frame (e.g., 

estimated as a weighted average) is important as well (Thompson et al. 1998, Buckland et 

al. 2001). 

Aerial surveys have been widely used to monitor wildlife populations including 

avian species (Martin and Knopf 1981, Shupe et al. 1987, Pelletier and Krebs 1998, 

Butler et al. 2007, Pearse et al. 2008).  As early as 1953, Eng (1955) flew aerial surveys 

for GSG leks from a fixed-wing aircraft.  Compared to traditional ground-based surveys, 

aerial surveys allow a larger area to be sampled in less time (Grensten 1987) and access 

to remote or privately-owned land (Lehman and Mauermann 1963, Butler et al. 2007, 
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McRoberts et al. 2011a).  Helicopters have proven useful and reliable in aerial surveys 

for estimating Galliform bird densities (Shupe et al. 1987, Rusk et al. 2007, Butler et al. 

2008) because they allow for reduced air speeds, sharper and safer turns between 

transects, and better vision directly below the aircraft as compared to fixed-wing aircraft 

(Grensten 1987, McRoberts et al. 2011a).  Helicopters have been used to survey leks of 

GPCs (Schroeder et al. 1992), LPCs (McRoberts et al. 2011a), and Attwater’s prairie 

chickens (T. cupido attwateri; Lehman and Mauermann 1963). 

Recent studies have evaluated the use of aerial surveys and distance sampling to 

estimate avian density (Butler et al. 2007, Rusk et al. 2007, Butler et al. 2008).  Rusk et 

al. (2007) compared density estimates of northern bobwhite (Colinus virginianus) in 

south Texas from morning covey-call surveys, walked transects, and helicopter transects.  

They found similar density estimates between the walked and helicopter transects.  Butler 

et al. (2007) flew surveys from a fixed-wing aircraft for Rio Grande wild turkey 

(Meleagris gallopavo intermedia) to examine factors affecting flock detectability and test 

distance sampling assumptions.  Their results indicated that flock size and vegetative 

cover had the greatest influence on detectability and fixed-wing aerial surveys may 

underestimate abundance.  Butler et al. (2008) observed high wild turkey flock 

detectability from a helicopter and concluded that helicopter surveys were a practical tool 

for estimating wild turkey abundance.   

During the spring of 2007 and 2008, a line-transect method was developed to 

measure LPC lek detectability and assess the disturbance response of lekking LPCs to 3 

types of aircraft (McRoberts et al. 2011a, b).  A Cessna 172 airplane, Robinson 22 
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helicopter, and Robinson 44 helicopter (hereafter, C172, R-22, and R-44, respectively) 

were used for the early-morning surveys.  McRoberts et al. (2011a) found lek 

detectability was influenced by aircraft platform, distance, and lek type (e.g., man-made 

or natural).  Specifically, leks attended by more males, man-made leks (e.g., abandoned 

oil and gas pads and bare ground surrounding stock tanks), and leks located closer to the 

transect were most visible from the R-44 (89.8%), followed by the R-22 (72.3%) and 

C172 (32.7%; McRoberts et al. 2011a).  McRoberts et al. (2011b) also found no 

significant disturbance response from helicopter surveys on breeding LPCs and most 

LPCs that flushed in response to the helicopter resumed pre-disturbance activities within 

a 10-min period. 

 

Spatial Modeling 

Spatial models can relate landscape and anthropogenic features, such as percent 

grassland and road density, with animal abundance, density, or occurrence (Hedley and 

Buckland 2004, Jarnevich and Laubhan 2011).  These models can identify suitable 

habitat and predict species occurrence or abundance, which is especially useful when 

balancing energy development and the needs of species of conservation concern, such as 

LPCs (Jarnevich and Laubhan 2011).  Hamilton and Manzer (2011) developed resource 

selection function (RSF) models that accurately predicted sharp-tailed grouse (T. 

phasianellus) lek occurrence in east-central Alberta relative to broad landcover types.  

Jarnevich and Laubhan (2011) developed niche-based models (e.g., maximum entropy 
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models; Elith et al. 2011) of habitat and anthropogenic features to predict the probability 

of LPC lek occurrence in Kansas to guide energy development. 

Occupancy models (e.g., maximum entropy models) developed from 

convenience-based sampling without a formal survey design incorporate presence-only 

data; while these data may be all that are available to research ecologists, the spatial 

models they produce can be misleading due to sampling bias (Elith et al. 2011, Royle et 

al. 2012).  Well-designed surveys can eliminate sampling bias, and incomplete 

detectability of individuals can be accounted for with hierarchical distance sampling 

(HDS) and spatial distance sampling (SDS) models (Hedley and Buckland 2004, Royal et 

al. 2004).  These models can then relate spatial covariates to animal density or abundance 

through regression techniques.  Further, because these methods model spatial variation 

associated with density or abundance, the resulting estimates are often more precise 

(Katsanevakis 2007). 

Spatial distance sampling models use a Poisson point process and parameters are 

estimated based on the conditional likelihood of observed detections; this likelihood is 

not easy to control, especially with complex functions (Hedley and Buckland 2004, Royle 

et al. 2004).  In contrast, HDS uses a more straight-forward approach in which estimated 

parameters are based on the unconditional likelihood of observed detections and 

competitive models can be objectively selected with Akaike’s Information Criterion 

(Burnham and Anderson 2002); this likelihood appears to be better-behaved for complex 

functions (Royle et al. 2004). 
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Other than the presumed extent of the current range, little is known about the 

current spatial distribution of LPC leks in the Texas Panhandle relative to landscape 

features, such as roads, transmission lines, and oil and natural gas development.  Because 

wind energy development in the Texas Panhandle is imminent (ERCOT 2006) and this 

development overlaps LPC occurrence in Texas (Pruett et al. 2009b), spatial models are 

an attractive technique for explaining lek density in the Texas Panhandle relative to 

current landscape features.  Further, they can offer predictions of how lek density may 

change with alterations in vegetation or increased energy development.  This information 

is needed because LPC populations in Texas have faced steady declines during the past 

100 years (Jackson and DeArment 1963, Sullivan et al. 2000) and are currently a 

candidate species for ESA listing.  Therefore, the ultimate goals of this project were to 

estimate lek density and abundance in the Texas occupied range and model 

anthropogenic and landscape features associated with lek density.  We accomplished 

these goals by flying helicopter lek surveys for 2 field seasons and employing a line-

transect method (McRoberts et al. 2011a, b). 

 

Preface 

This thesis represents my own critical thinking, data analysis, interpretation, and 

writing ability.  The following chapters are co-authored by Jennifer M. Timmer, Matthew 

J. Butler, Warren B. Ballard, Clint W. Boal, and Heather A. Whitlaw.  Co-authorship was 

determined based on the guidelines outlined by Dickson et al. (1978) and Ballard (2005).  

My chapters are written in a format intended for submission to the Journal of Wildlife 
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Management (Block et al. 2011).  Chapter I highlights the need for more effective 

monitoring of prairie grouse and the potential impact of energy development, particularly 

on LPCs in west Texas.  Chapter II provides lek and LPC density and abundance 

estimates for the Texas Panhandle and Chapter III provides spatially-explicit models 

relating lek density to landscape features, such as roads and transmission lines.  The 

information presented in my thesis is intended to assist wildlife managers, biologists, and 

energy developers provide more effective management of LPCs in Texas and minimize 

potential impacts of energy development on this species of conservation concern. 
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Figure 1.1. Map of the historic and the estimated 2007 occupied range for lesser prairie-
chickens (based on Davis et al. 2008). 
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Figure 1.2. Current lesser prairie-chicken (LPC) range relative to wind power classes and  
 
Competitive Renewable Energy Zones (CREZ) in the Texas Panhandle.
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CHAPTER II 

 
ABUNDANCE AND DENSITY OF LESSER PRAIRIE-CHICKEN LEKS IN TEXAS 

 

Abstract 

As with many other grassland birds, lesser prairie-chickens (LPC; Tympanuchus 

pallidicinctus) have experienced population declines in the southern Great Plains.  Their 

occupied range has been reduced by >90% due to direct habitat loss from conversion of 

native grassland to cropland, livestock overgrazing, and invasion of woody plants, and 

indirect habitat loss from disturbance by energy development.  As a result, LPCs are a 

species of conservation concern.  In Texas, LPCs have faced steady declines in the past 

100 years and now face a new potential disturbance, wind energy development.  Texas 

currently produces the most wind power in the United States and production is growing.  

In the Texas Panhandle, there are 2 declining LPC populations which may be negatively 

impacted by wind energy development.  Thus, the main objective of this study was to 

determine the current density of LPC leks within the Texas occupied LPC range relative 

to potential wind energy development.  Our sampling frame encompassed 86.9% of the 

Texas occupied LPC range (i.e., we excluded portions that were not LPC habitat such as 

riparian woodlands).  To estimate lek density in our sampling frame, we employed a line-

transect–based aerial survey method using a Robinson 22 helicopter to count leks.  We 

surveyed a total of 26,810.9 km of aerial transects in the spring of 2010 and 2011 during 

which we detected 96 leks and observed 5 detections outside the currently delineated 
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LPC distribution.  We estimated 2.0 leks/100 km2 (90% CI = 1.4–2.7 leks/100 km2) and 

12.3 LPCs/100 km2 (90% CI = 8.5–17.9 LPCs/100 km2) for our sampling frame.  Our 

state-wide abundance estimates were 293.6 leks (90% CI = 213.9–403.0 leks) and 

1,822.4 LPCs (90% CI = 1,253.7–2,649.1 LPCs).  Our best model indicated lek size and 

lek type (wi = 0.235) influenced lek detectability.  Lek detectability was greater for larger 

leks and natural leks versus man-made leks.  Our state-wide survey efforts provided 

wildlife managers and biologists with population estimates, new lek locations, and areas 

to target for monitoring and conservation.  This information is necessary for a species of 

concern, such as LPCs. 

 

Introduction 

The occupied range of lesser prairie-chickens (LPC; Tympanuchus pallidicinctus) 

has been reduced by >90% and LPCs now inhabit remnants of native grassland in 

Colorado, Kansas, New Mexico, Oklahoma, and Texas.  This decline has been attributed 

to direct habitat loss from conversion of native grassland to cropland, livestock 

overgrazing, and invasion of woody plants, and indirect habitat loss from disturbance by 

energy development (Taylor and Guthery 1980, Applegate and Riley 1998, Hagen et al. 

2004).  As a result, the LPC was petitioned for listing under the Endangered Species Act 

(ESA) as threatened or endangered in 1995 (U.S. Fish and Wildlife Service [USFWS] 

1998).  Recently, USFWS upgraded listing priority from a Priority 8 to a Priority 2 

(USFWS 2008) suggesting that listing may be imminent (USFWS 1983).  The listing 

priority was upgraded to 2 because of an “increased magnitude of threats” from oil, 
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natural gas, and wind energy development, reversion of Conservation Reserve Program 

(CRP) grassland to cropland, overgrazing, herbicide use in shinnery oak (Quercus 

havardii) habitat, mesquite (Prosopis glandulosa) and juniper (Juniperus virginiana) 

encroachment, and habitat fragmentation (USFWS 2008). 

Due to the LPC’s conservation status, McRoberts et al. (2011a) identified a need 

for effective monitoring and efficient techniques for finding new leks.  Lek surveys and 

lek counts from the ground have traditionally been used to monitor population trends in 

prairie grouse (Centrocercus spp. and Tympanachus spp.) populations and have been 

incorrectly used to estimate population size (Applegate 2000, Walsh et al. 2004).  In 

addition, lek surveys are often conducted from roads, a convenience-based sampling that 

can yield biased conclusions (Anderson 2001).  Recent studies have evaluated the use of 

aerial surveys and distance sampling to estimate avian density (Butler et al. 2007, Rusk et 

al. 2007, Butler et al. 2008, McRoberts et al. 2011a).  Aerial distance sampling provides a 

more accurate density estimate than the traditional ground-based techniques by allowing 

for probabilistic sampling of potential habitat and adjusting for incomplete detectability 

(Buckland et al. 2001).  Compared to traditional ground surveys, aerial surveys allow a 

larger area to be sampled in less time and access to remote or privately-owned land 

(Butler et al. 2007, McRoberts et al. 2011a). 

Texas currently produces the most wind power in the United States (American 

Wind Energy Association 2012) and 5 Competitive Renewable Energy Zones (CREZ) 

were designated in west Texas to encourage further wind energy development (Electric 

Reliability Council of Texas [ERCOT] 2006).  Transmission lines are already being 
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constructed to deliver electricity generated in these zones to customers in large Texas 

cities to the east (ERCOT 2006).  Two of the CREZs overlap approximately 27% of the 

occupied LPC range in Texas.  However, little is known about how this anthropogenic 

disturbance could impact LPC density which has faced steady declines during the past 

100 years (Sullivan et al. 2000, Kuvlesky et al. 2007).  To better inform conservation and 

management decisions, we conducted the first randomized line-transect–based distance 

sampling aerial survey of the Texas occupied LPC range.  Our objective was to estimate 

lek density and abundance in Texas relative to potential wind energy development. 

 

Study Area 

The current estimated range of LPCs in Texas lies mostly in the northeast and 

southwest portions of the Texas Panhandle, with a few birds thought to be scattered 

throughout the central portion (Davis et al. 2008).  Our sampling frame encompassed 

86.9% of the Texas occupied LPC range (e.g., we excluded portions that were not LPC 

habitat such as riparian woodlands and cotton fields), while focusing on the intersection 

of current LPC range and the 2 CREZs.  The northeast region of the study area was a 

mixed-grass prairie dominated by sand sagebrush (Artemisia filifolia) and little bluestem 

(Schizachyrium scoparium).  The southwest region of the study area was a short-grass 

prairie dominated by shinnery oak (Quercus havardii) and little bluestem with some 

mesquite (Prosopis glandulosa).  Cotton, winter wheat, and grain sorghum were the main 

crops grown in the region (United States Department of Agriculture [USDA] 2008).  The 

climate of the Panhandle was mostly dry and the majority of the precipitation occurred 
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during the fall and spring (PRISM Climate Group 2011).  The southwest region of the 

Panhandle received an average of 40−51 cm of precipitation yearly and the northeast 

region received an average of 50−61 cm of precipitation yearly (PRISM Climate Group 

2011). 

Methods 

We used a stratified random sampling design with 4 strata (Thompson et al. 

1998).  The 4 strata were based on vegetative characteristics thought to influence LPC 

density (e.g., grassland, shrubland, agriculture, and a mosaic) and potential for wind 

energy development impacts on LPCs.  For example, areas composed mostly of native 

and CRP grasslands were grouped together into one stratum because LPCs use this 

habitat for breeding, nesting, and brood-rearing (Taylor and Guthery 1980, Applegate and 

Riley 1998).  We delineated vegetation types based on the U.S. Department of 

Agriculture (USDA) Texas cropland data layer (USDA 2008).  The sampling frame was 

divided into 329, 7.2 km × 7.2 km survey blocks.  At this size, we could complete 1 

survey block per flight. 

The first stratum was composed of survey blocks that were within a CREZ and 

≥50% grassland (patches were native grassland, CRP, or idle cropland comprising >80% 

of the total vegetation; Table 2.1).  The second stratum was composed of survey blocks 

that were also ≥50% grassland, but not within a CREZ.  The third stratum was composed 

of survey blocks with >50% shrubland (i.e., patches were composed of shrubs <5 m tall 

comprising ≥20% of the total vegetation) and this particular composition did not occur 

within a CREZ.  The fourth stratum was composed of survey blocks with a ≥75% 



 Texas Tech University, Jennifer M. Timmer, May 2012   
 

28 
 

combination of grassland/shrubland/grain field (this mosaic was comprised of 30–50% 

grassland, ≤50% shrubland, and >0% grain field) and 1 of these blocks was located 

within a CREZ.  The specifications for this stratum were meant to include potential LPC 

habitat while excluding non-habitat, such as urban areas, water bodies, cotton fields, and 

woodland regions (e.g., riparian cottonwood [Populus deltoides] galleries). 

 We allocated sample size to each stratum using the following formula 

gu ii
U ×=   

where ui is the number of survey blocks allocated to each stratum i, U is the total number 

of survey blocks allocated for the 2-year study (initially 180 blocks) and gi is the 

weighting factor for each stratum i.  The weighting factor was calculated as 

∑
=

r
rg

i

i

i

 

 
where ri was the rank for each stratum i.  The strata were ranked from 1 to 4 with 4 

representing the highest priority stratum.  Because we were most interested in examining 

LPC density in areas subject to wind energy development, we prioritized the strata based 

on the greatest potential for wind energy development to impact lek distribution.  We 

planned to survey 180 blocks over 2 survey years.  Based on the weighting factors, we 

randomly-selected 72 survey blocks in the first stratum, 54 in the second stratum, 36 in 

the third stratum, and 18 in the fourth stratum (Table 2.1).  We also selected some 

additional blocks from each stratum in case we were able to survey more blocks than 

planned. 
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We used ArcGIS 9.3 (Environmental Systems Research Institute, Inc., Redlands, 

CA) to create a set of grid cells (7.2 km × 7.2 km) over the extent of the occupied LPC 

range in Texas.  We re-classified and grouped the landcover layer based on the Texas 

cropland data layer (USDA 2008) into 8 categories (e.g., cotton, grains, other crops, 

grassland or idle pasture, shrubland, woodland, open water, and barren or developed 

areas) and calculated the area of grassland, shrubland, and grain field in each survey 

block.  We combined this information with the 2 CREZs in the Panhandle and assigned 

survey blocks to 1 of the 4 strata and then randomly-selected blocks from each stratum.  

Of the 329 survey blocks covering the sampling frame, we did not consider 44 blocks as 

potential LPC habitat because they were mostly urban, open water, or woodland), and so 

were not included in any strata. 

We used ArcGIS 9.3 to generate a flight path for each survey block and measure 

the nearest distance from each detection to a transect (Hiby and Krishna 2001).  Transects 

were oriented north-south with 400-m spacing between them.  The observer’s global 

positioning system (GPS) unit recorded a track log of each flight path to provide the 

actual transect lengths that were surveyed.  We set the track logs to record points at least 

every 2 seconds. 

We divided our sampling frame into 2 regions for the 2 field seasons.  During 

spring 2010, we surveyed blocks in the northeast and central regions of the Panhandle 

(hereafter, northeast region) and during spring 2011, we surveyed blocks in the southwest 

and west-central regions (hereafter, southwest region; Fig. 2.1).  We conducted our 

surveys from an R-22 helicopter (Robinson Helicopter Co., Torrance, CA), which seated 
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the pilot and 1 observer.  To train technicians, we also conducted flights early in each 

field season from an R-44 helicopter (Robinson Helicopter Co., Torrance, CA).  We 

conducted flights between early-March and late-May 2010–2011.  We followed the 

survey protocol developed by McRoberts et al. (2011a) (i.e., target altitude of 15 m above 

ground-level, target speed of 60 km/hr, survey between sunrise until ≈2.5 hr post-

sunrise).  We did not include portions of transects that were surveyed outside the set 

survey protocol (e.g., when the pilot increased the helicopter’s altitude to avoid towns or 

feedlots) in the final analyses.  When LPCs were detected, the pilot deviated from 

transect and flew over the center of the group of birds or the center of the location from 

where birds flushed.  We used a GPS unit to record the exact location of detected LPCs. 

After aerial surveys, we examined ≥50% of the aerial detections from the ground 

to verify lek activity and location.  We arrived at detected leks ≥60 min before sunrise to 

listen for male vocalizations and watch for male displays.  If LPCs were not seen or heard 

at or near the detection waypoints, we looked around the point within a ≈100–m radius 

for evidence of lek activity (e.g., feathers, scat, flattened grass, etc.).  We conducted 

ground counts with binoculars from a parked vehicle or blind approximately 75–200 m 

from each lek (McRoberts et al. 2011b). 

Data Analysis 

We separated our data into 2 groups for analysis for each region: detections that 

were confirmed leks and all detections (i.e., lek and non-lek detections).  To analyze the 

leks-only dataset, the individual lek was our sampling unit.  For the all-detections dataset, 

each detection was a sampling unit and we analyzed our observations as groups of LPCs.  
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We used program R 2.13.0 (R Development Core Team 2011) to perform 2-way 

ANOVA tests with the strata and region as explanatory covariates and either average 

cluster size or average encounter rate as the response variable to determine if the data 

should be further stratified by region (α = 0.10). 

We grouped our distance data into 7 distance intervals, 0–35 m, 35–50 m, 50–70 

m, 70–90 m, 90–120 m, 120–150 m, and 150–179 m, for both datasets (Fig. 2.2).  We 

determined our grouping based on recommendations by Buckland et al. (2001) to reduce 

spiking around the centerline, produce a shoulder on the detection function, and provide 

better model fit. 

We used the multiple-covariate and conventional distance sampling engines in 

program DISTANCE 6.0 (Thomas et al. 2010) to analyze our data and Akaike’s 

Information Criterion corrected for small sample size (AICc) to select competitive models 

(Burnham and Anderson 2002).  We considered models competitive if ∆AICc ≤ 2 and 

excluded models with uninformative parameters (Arnold 2010).  For the leks-only 

dataset, our covariates included lek size, lek type, and survey date.  We included lek size 

and lek type (i.e., man-made or natural) in our models because McRoberts et al. (2011a) 

determined that lek detectability was greater for man-made leks and larger leks.  For our 

analysis, man-made leks included leks located in grain or plowed fields because the 

vegetation was shorter in these manipulated landscapes.  We used a binary classification 

for lek type by assigning man-made leks a 1 and natural leks a 0.  We included lek size as 

a numerical variable because accurate LPC counts were possible when flying over a lek 

to mark it.  Following McRoberts et al. (2011a), we included a standardized survey date 
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among our covariates by assigning our earliest survey date, 2 March, a value of 0 and 

consecutively numbering the following survey dates.  Because lek attendance peaks in 

the middle of the spring (Haukos and Smith 1999) and the birds are less likely to flush 

during this period, we modeled a quadratic relationship for standardized date (McRoberts 

et al. 2011b). 

For the all-detections dataset, our covariates included lek confirmation, detection 

type, and survey date.  We included lek confirmation and detection type as categorical 

covariates and also included a standardized survey date with a quadratic term.  Detections 

that were confirmed leks were assigned a 1 and non-lek detections were assigned a 0.  

For detection type, detections observed in a manipulated landscape (e.g., oil pad, grain 

field, or next to a stock tank) were assigned a 1 and detections observed in a natural 

landscape (e.g., grassland or shrubland) were assigned a 0.  For this dataset, we regressed 

natural log transformed group size against our detection probability to correct for size-

biased detection if P < 0.15 (Buckland et al. 2001). 

We examined several key function and series expansion combinations as 

recommended by Buckland et al. (2001) to determine which model(s) best described 

detectability.  These models included combinations of the half-normal, hazard rate, and 

uniform key functions and the cosine, hermite polynomial, and simple polynomial 

adjustment terms (Table 2.2).  We model averaged among our competing models (∆AICc 

≤ 2) to account for model selection uncertainty (Burnham and Anderson 2002, Anderson 

2008).  We tested for differences in lek and LPC density estimates between strata with a 

z-test in program R (Buckland et al. 2001). 
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Results 

We inventoried 105 survey blocks (90 from an R-22 and 15 from an R-44 

helicopter) during 17 March through 3 June 2010 and surveyed 103 survey blocks (92 

from an R-22 and 11 from an R-44 helicopter) during 1 March through 4 May 2011.  In 

spring 2010 (northeast region), we flew 233.7 hr (2.2 hr/block) at an average speed of 

63.3 km/hr (SE = 0.679) and in spring 2011 (southwest region), we flew 241.3 hr (2.3 

hr/block) at an average speed of 60.8 km/hr (SE = 0.388).  We surveyed a total distance 

of 13,403.4 km in the northeast and 13,407.5 km in the southwest and covered 88.6% of 

our sampling frame and 61.6% of the Texas LPC occupied range.  We detected LPCs 

within 160.5 m of transect in the northeast and 178.3 m in the southwest. 

We detected 66 LPC groups in the northeast; 35 were confirmed as leks, 10 were 

known leks, 1 detection was outside of the current LPC range in Texas, and 13 detections 

were within a CREZ.  In the southwest, we detected 109 LPC groups; 61 were confirmed 

as leks, 15 were known leks, 4 detections were outside of the current LPC range, and 10 

detections were within a CREZ.  The average number of LPCs observed attending leks 

was 4.5 (SE = 0.670) and 5.2 (SE = 0.525) LPCs in the northeast and southwest, 

respectively. 

We did not detect a difference in average encounter rate between strata and region 

for the leks-only dataset (F3, 200 = 1.008, P = 0.390) and we also did not detect differences 

between strata and region for average cluster size and average encounter rates for the all-

detections dataset (F2, 168 = 0.295, P = 0.745; F3, 200 = 0.794, P = 0.499, respectively).  

Therefore, we did not post-stratify the analysis by region for either dataset. 
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We found 1 model that was competitive for the leks-only dataset, the half-normal 

key function with lek size and lek type included as covariates (AICc weight [wi] = 0.235; 

Table 2.2). Detectability was greater for natural leks and larger lek sizes (Fig. 2.3).  We 

found 2 competitive, parsimonious models for the all-detections dataset, the half-normal 

key function and cosine adjustment term (wi = 0.211) and the hazard rate key function 

with no adjustment (wi = 0.203; Table 2.3).  Our lek and LPC density estimates for our 

sampling frame were 2.0 leks/100 km² (90% CI = 1.4–2.7 leks/100 km²) and 12.3 

LPCs/100 km² (90% CI = 8.5–17.9 LPCs/100 km²), respectively (Table 2.4).  We 

estimated 1.0 leks/100 km² (90% CI = 0.6–1.7 leks/100 km²) for the first stratum and 2.4 

leks/100 km² (90% CI = 1.5–3.8 leks/100 km²), 2.7 leks/100 km² (90% CI = 1.6–4.3 

leks/100 km²), and 2.7 leks/100 km² (90% CI = 1.3–5.7 leks/100 km²) for the second, 

third, and fourth strata, respectively.  Our lek and LPC abundance estimates for our 

sampling frame were 293.6 leks (90% CI = 213.9–403.0 leks) and 1,822.4 LPCs (90% CI 

= 1,253.7–2,649.1 LPCs).  Our LPC estimates include males and females because both 

genders were included in counts of individual birds for detections and hens not detected 

at leks were accounted for with our estimated detection function. 

We detected a difference in lek density between strata 1 and 2 (Z = –1.972, P = 

0.024), strata 1 and 3 (Z = –1.951, P = 0.026), and strata 1 and 4 (Z = –1.293, P = 0.098).  

We also detected a difference in LPC density between strata 1 and 2 (Z = –1.775, P = 

0.038) and strata 1 and 3 (Z = –1.677, P = 0.047).  We did not detect a difference in lek 

density between strata 2 and 3 (Z = –0.236, P = 0.407), strata 2 and 4 (Z = –0.197, P = 

0.422), or strata 3 and 4 (Z = –0.030, P = 0.488).  We also did not detect a difference in 
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LPC density between strata 1 and 4 (Z = –1.193, P = 0.116), strata 2 and 3 (Z = –0.425, P 

= 0.335), strata 2 and 4 (Z = –0.142, P = 0.444), or strata 3 and 4 (Z = 0.197, P = 0.578). 

 

Discussion 

We conducted the first randomized line-transect–based distance sampling survey 

of the LPC range in Texas to provide estimates of lek density.  Overall, we detected 71 

new leks, 25 known leks, 5 LPC observations outside the occupied state range, and 23 

observations within 1 of the 2 CREZs.  These new leks probably would not have been 

detected by traditional road-based lek surveys that many wildlife managers and biologists 

have implemented in the past (Butler et al. 2010, McRoberts et al. 2011a).  We were also 

able to provide estimates of precision for our density estimates, which many previous 

population monitoring efforts have not done (Applegate 2000, McRoberts et al. 2011a). 

Our model with the most support for leks only included all covariates (Table 2.2).  

However, the covariate “date” was ≤2 ∆AICc units of the second-highest ranked model.  

Because the penalty for including an additional parameter is 2 AICc units, it was most 

likely an uninformative parameter that did not explain enough variation to include it in a 

competitive model (Arnold 2010).  McRoberts et al. (2011a) similarly found that date 

played a small role in lek detectability and concluded that an increase in lek detectability 

with date may have been due to observers developing a search image for leks.  Lek size 

and lek type were the most influential covariates on lek detectability (Table 2.2).  

McRoberts et al. (2011a) also observed an increase in lek detectability with lek size, but 

they observed a higher detection probability for man-made leks and detected more of 
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them.  Our lek detectability was greater for natural leks, but mostly evident at small lek 

sizes (Fig. 2.3).  It seems intuitive that displaying LPCs would be easier to spot on 

manipulated landscapes void of vegetation, such as abandoned oil pads, and that 

windmills or stock tanks would provide a visual cue for observers looking for leks 

(McRoberts et al. 2011a).  However, Schroeder et al. (1992) concluded that lek 

detectability could be negatively influenced by landscape features that distract observers.  

Two GPC leks that were undetected on their helicopter surveys were located near a 

powerline or windmill. 

Our detection probability for leks was lower than Schroeder et al. (1992) and 

McRoberts et al. (2011a) reported (51.0% compared to 67% and 72.3%, respectively) 

from their helicopter surveys.  One possible explanation for our lower detection rate is 

our survey sampled the entire occupied range in Texas but Schroeder et al. (1992) and 

McRoberts et al. (2011a) surveyed high-density areas with known active leks.  Of the 22 

counties we surveyed, we only observed LPCs in 12 counties.  We also flew more 

surveys outside the peak lekking period in order to complete our sampling effort.  Lastly, 

our average lek sizes were smaller than those observed by Schroeder et al. (1992) (5.0 

LPCs compared to 6.7 LPCs) and smaller leks are less detectable than large leks. 

The abundance and density estimates from the literature differ from our estimates 

due to the techniques used to survey and estimate LPC density.  We accounted for 

incomplete detectability of individuals within our sampling frame and provided 

probabilistic sampling of potential habitat.  In contrast, other abundance and density 

estimates are derived from convenience-based sampling of higher-quality habitat that do 
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not account for undetected individuals within the sampling frame, such as hens not 

attending leks (e.g., Davis et al. 2008).  For example, Olawsky and Smith (1991) 

estimated summer and winter LPC densities in the southwest Texas Panhandle and 

southeastern New Mexico that were >150 times more than our LPC density estimates.  

They used a line-transect procedure to estimate lek density within their sampling frame, 

but transects were restricted to roads and their surveys were conducted in some of the 

highest-quality LPC habitat.  Davis et al. (2008) estimated a Texas LPC abundance 

estimate of 15,730 LPCs (range = 6,077–24,132 LPCs), but LPC density was assumed 

constant across the entire range for the state and their study areas were some of the best 

habitat in the state.  In contrast, Hamilton and Manzer (2011) used a modified point count 

design with distance sampling to estimate sharp-tailed grouse (T. phasianellus) lek 

density in east-central Alberta, and their regional density estimate was comparable to 

ours (2.6 leks/100 km2; 95% CI=1.6–4.3 leks/100km2). 

We did not observe differences in average encounter rate between the northeast 

and the southwest regions, even though the regions represent 2 separate LPC populations 

(Taylor and Guthery 1980, Corman 2011).  Historically, the northeastern populations 

have remained more stable than the southwestern populations and have experienced 

fewer declines in the number of males at leks (Sullivan et al. 2000).  However, we 

detected almost twice as many leks in the southwest region.  One possible explanation for 

this could be the increased density of oil and gas drilling in the northeast region during 

the past 20 years (Corman 2011).  Another explanation is more agriculture production in 

the southwest region (USDA 2008) and thus, more sources of water and food.  LPCs 
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have been documented to use stock tanks for water, especially during a drought 

(Crawford and Bolen 1973, Pirius 2011) and LPCs may also use grain fields when there 

is less available food (Applegate and Riley 1998).  Lastly, there is greater range overlap 

in Texas with increasing New Mexico LPC populations compared to decreasing 

Oklahoma populations (Davis et al. 2008).  Therefore, LPC populations in the southwest 

region could be greater due to dispersing LPCs from populations in New Mexico 

(Corman 2011). 

We observed a difference in lek density between strata 1 and 2, strata 1 and 3, and 

strata 1 and 4 and a difference in LPC density between strata 1 and 2 and strata 1 and 3.  

We anticipated having higher density estimates in strata 1 and 2 because LPCs primarily 

use native and CRP grasslands for breeding, nesting, and brood-rearing (Taylor and 

Guthery 1980, Applegate and Riley 1998); therefore we allocated less survey effort to 

blocks in strata 3 and 4.  However, our greatest density estimates were in strata 3 and 4 

while our lowest density estimate was for stratum 1 in the 2 CREZs (Table 2.4).  We did 

not observe a difference in lek or LPC density between strata 2 and 3 or strata 2 and 4; 

however our results suggest that low-growing shrubs and a source of grain are important 

components of LPC habitat in Texas, given that stratum 3 was composed of ≥50% 

shrubland and stratum 4 was composed of a mix of grassland, shrubland, and grain fields.  

Other studies have reached a similar conclusion.  For example, Patten et al. (2005) 

observed radio-marked LPCs in a survival study in southeastern New Mexico and 

northwestern Oklahoma occupying sites with a greater density of shrubs and having a 

higher survival rate for sites with >20% shrub cover.  Percent of the landscape composed 
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of shrubland patches (i.e., patches composed of shrubs <5 m tall comprising ≥20% of the 

total vegetation) was included in the best spatially-explicit model predicting lek density 

in Texas (AIC = 938.926, wi = 0.826) and lek density peaked where landscapes were 

composed of ≈50% shrubland patches (Timmer 2012).  Crawford and Bolen (1976) 

found the greatest lek density and populations in the southwest Texas Panhandle on sites 

with limited cultivation (e.g., 5–37%) as compared to sites with no or extensive 

cultivation. 

The potential threats to declining prairie grouse populations require more 

effective population monitoring, such as aerial lek surveys.  There are several ways to 

improve lek detectability from aerial surveys, as identified by McRoberts et al. (2011a), 

such as using helicopters instead of fixed-winged aircraft and restricting surveys to clear 

sunny mornings when visibility of LPCs is greatest.  We further suggest not flying on 

windy mornings (e.g., wind speed >32 km/hr) as it is more difficult to control aircraft 

speed along transect and navigating turns over tall structures is more dangerous.  

Schroeder et al. (1992) observed a decrease in lek detection with an increase in helicopter 

speed, so flying transects at ≤60 km/hr should increase detection rate.  McRoberts et al. 

(2011a) further recommended flying surveys during the peak lekking season when hen 

lek attendance is greatest and displaying and fighting males are most visible to observers.  

Disturbance to LPC breeding activity is also minimal during this period because the 

males are less likely to flush when hens are present at leks (McRoberts et al. 2011b).  We 

observed LPCs flushing more frequently later in the morning in response to the 
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helicopter, so restricting surveys to ≈2.5 hr post-sunrise should minimize this disturbance 

response. 

If distance sampling and aerial surveys are used to estimate lek density, we 

recommend a few precautions to ensure quality data and accurate estimates.  Critical 

assumptions must be met, such as complete detectability on the transect (Buckland et al. 

2001), which is not possible with a fixed-winged aircraft.  It is important to mark where 

the birds flushed from and the direction and distance that the birds flushed to avoid re-

counting (Buckland et al. 2001).  To prevent spiking of data at the center line (e.g., 

distances are erroneously allocated to on or just off the transect), pilots need to stay on 

the transect line until the helicopter is perpendicular to the detected lek rather than flying 

towards the lek to mark it when it is spotted in front of the helicopter.  Observers can use 

rangefinders to measure distances to detections and clinometers to measure sighting 

angles, so distances can be estimated with basic trigonometry (Buckland et al. 2001).  

However, we found that deviating from the flight transect to a detection was more 

effective for obtaining an accurate location of a lek and it also provided a count of LPCs 

at each detection.  The distance data should be examined while the data are being 

collected so problems, such as heaping, spiking, movement prior to detection, or missing 

animals on transect, can be corrected in the beginning of a field season (Buckland et al. 

2001, Thomas et al. 2010).  Finally, we included covariates that could have affected lek 

detectability, such as lek size, in order to improve precision of our density estimates 

(Marques et al. 2007). 
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Management Implications 

Species of conservation concern, such as LPCs, require effective monitoring and 

management efforts.  Aerial lek surveys can provide wildlife managers and biologists 

with accurate density and abundance estimates and distribution information.  For 

example, the 2 CREZs in the Texas Panhandle overlap low-density portions of the LPC 

range, but overall LPC abundance in Texas is lower than previously thought.  Wind 

energy developers and biologists can utilize our techniques to identify and monitor LPC 

populations that occur in potential wind resource areas.  They can also avoid energy 

development in high-density portions of the LPC range.  Our study provides an initial 

encounter rate and detection probability that can be used to determine the required 

transect length and expected number of detections, given a desired level of precision 

(Buckland et al. 2001).  The amount of transects needed for a desired level of precision or 

expected number of detections may determine if aerial lek surveys are even a feasible and 

cost-effective management tool. 
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Table 2.1.  Sampling stratification and survey effort allocation for lesser prairie-chicken lek surveys in Texas  
 
during spring 2010 and 2011. 
______________________________________________________________________________________________________ 
 
Stratuma CREZb Landcover Type Weighting Factorc Allocation of Number of Blocks 
    (gi) Survey Blocksd  Surveyed/Total  
       Available Blockse 

 

 
Priority 1 Yes ≥50% Grassland  0.4 72 76/97 
 
Priority 2 No ≥50% Grassland  0.3 54 73/125 
  
Priority 3 No >50% Shrubland  0.2 36 39/39 
 
Priority 4 Either ≥75% Grassland/  0.1 18 20/24  
  shrubland/grain field mix     
______________________________________________________________________________________________________ 
a  Lower numbers are a greater priority. 
 
b Competitive Renewable Energy Zone. 
 
c Weighting factor is calculated as 

∑
=

r
rg

i

i

i

. 
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d N = 180 blocks for 2010 and 2011. 
 
e N = 208 blocks for 2010 and 2011; more blocks were available to survey in Priority 2 stratum than in Priority 1 stratum.
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Table 2.2.  Ranked models of lek density estimates from lesser prairie-chicken aerial surveys in Texas in spring 2010 and 2011 

(n = 96 confirmed leks).  For each candidate model, we give –2×log-likelihood (–2LL), number of parameters (K), second-

order Akaike’s Information Criterion (AICc), difference in AICc compared to lowest AICc of the model set (∆i), AICc weight 

(wi), value of the probability density function of perpendicular distances at 0 m (f(0)), detection probability (P), and coefficient 

of variation for detection probability (cv(P)). 

______________________________________________________________________________________________________ 
Modela   –2LL K AICc ∆i wi f(0) P cv(P) 
______________________________________________________________________________________________________ 
Half-normal (size+type+date) 304.568 5 315.235 0.000   0.403 0.012 0.482 0.109 
 
Half-normal (size+type) 310.057 3 316.318 1.083   0.234 0.011 0.510 0.099 
 
Half-normal (size)  313.266 2 317.395 2.160   0.137 0.011 0.532 0.097 
 
Half-normal (size+date) 309.441 4 317.880 2.645   0.107 0.011 0.505 0.107 
 
Hazard-rate (size)    312.399 3 318.660 3.425   0.073 0.016 0.355 0.135 
 
Hazard-rate (size+type) 311.657 4 320.096 4.861   0.035 0.012 0.468 0.103 
 
Hazard-rate (size+type+date) 310.423 6 323.367 8.132   0.007 0.013 0.446 0.113 
 
Hazard-rate  323.773 2 327.902 12.667   0.002 0.016 0.355 0.452 
______________________________________________________________________________________________________ 
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Table 2.2.  Continued 
______________________________________________________________________________________________________ 
Model a   –2LL K AICc ∆i wi f(0) P cv(P) 
______________________________________________________________________________________________________ 
Half-normal + cosine 323.858 2 327.987 12.752   0.001 0.013 0.437 0.119 
 
Uniform + cosine  322.585 3 328.845 13.610 <0.000 0.013 0.416 0.123 
 
Hazard-rate (type)  325.492 3 331.753 16.518 <0.000 0.012 0.481 0.087 
 
Hazard-rate (size+date) 321.778 5 332.444 17.209 <0.000 0.012 0.471 0.086 
 
Hazard-rate (date)  325.380 4 333.820 18.585 <0.000 0.012 0.467 0.103 
 
Half-normal (date) 328.476 3 334.737 19.502 <0.000 0.010 0.578 0.073 
 
Half-normal (type+date) 326.415 4 334.854 19.619 <0.000 0.010 0.570 0.076 
 
Half-normal (type) 331.052 2 335.181 19.946 <0.000 0.010 0.587 0.068 
 
Hazard-rate (type+date) 324.728 5 335.394 20.159 <0.000 0.012 0.460 0.099 
______________________________________________________________________________________________________ 
a Covariates include: size = size of lek, type = lek type (man-made or natural), date = quadratic function of standardized survey  
 
date. 
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Table 2.3.  Ranked models of density estimates from lesser prairie-chicken aerial surveys in Texas in spring 2010 and 2011 (n 

= 175 detections).  For each candidate model, we give –2×log-likelihood (–2LL), number of parameters (K), second-order 

Akaike’s Information Criterion (AICc), difference in AICc compared to lowest AICc of the model set (∆i), AICc weight (wi), 

value of the probability density function of perpendicular distances at 0 m (f(0)), detection probability (P), and coefficient of 

variation for detection probability (cv(P)). 

______________________________________________________________________________________________________ 
Modela  –2LL K AICc ∆i  wi f(0) P cv(P) 
______________________________________________________________________________________________________ 
 
Hazard-rate (lek)  562.443 3 568.584 0.000   0.256 0.016 0.354 0.102  
 
Half-normal + cosine 564.894 2 568.964 0.380   0.211 0.015 0.379 0.078 
 
Hazard-rate  564.977 2 569.047 0.463   0.203 0.016 0.350 0.210 
 
Hazard-rate (lek+type) 561.302 4 569.537 0.954   0.159 0.016 0.342 0.094 
 
Uniform + cosine  564.705 3 570.845 2.261   0.083  0.015 0.375 0.081 
 
Hazard-rate (lek+day) 562.713 5 573.068 4.484   0.027 0.013 0.426 0.064  
 
Hazard-rate (lek+type+day) 560.939 6 573.439 4.855   0.023 0.013 0.421 0.065 
______________________________________________________________________________________________________ 
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Table 2.3.  Continued 
______________________________________________________________________________________________________ 
Modela   –2LL K AICc ∆I wi f(0) P cv(P) 
______________________________________________________________________________________________________ 
Hazard-rate (type)  567.383 3 573.523 4.940   0.022 0.013 0.439 0.059 
 
Hazard-rate (date)  567.360 4 575.595 7.011   0.008 0.013 0.432 0.060 
 
Half-normal (lek)  573.270 2 577.340 8.756   0.003 0.011 0.497 0.056 
 
Hazard-rate (type+day) 567.395 5 577.750 9.166   0.003 0.013 0.437 0.060 
 
Half-normal (lek+date) 570.647 4 578.882 10.299   0.001 0.011 0.492 0.057 
 
Half-normal (lek+type) 573.079 3 579.219 10.635   0.001 0.011 0.496 0.056 
 
Half-normal (lek+type+date) 569.966 5 580.321 11.737   0.001 0.011 0.490 0.057 
 
Half-normal (date) 577.571 3 583.711 15.127 <0.001 0.011 0.503 0.055 
 
Half-normal (type+date) 577.273 4 585.508 16.924 <0.001 0.011 0.503 0.055 
 
Half-normal (type) 581.440 2 585.509 16.926 <0.001 0.011 0.510 0.053 
______________________________________________________________________________________________________ 
a Covariates include: lek = detection is confirmed lek or not, type = detection was observed in natural or man-made landscape,  
 
date = quadratic function of standardized survey date.  
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Table 2.4.  Density and abundance estimates and average encounter rate for 2 datasets from lesser prairie-chicken (LPC) aerial  
 
surveys in Texas in spring 2010 and 2011. 
______________________________________________________________________________________________________ 
  Density  Encounter  Abundance 
 
Dataset Da 

cv(D) CIb  nc Ld  n/L  cv(n/L) Ne CI 
______________________________________________________________________________________________________ 
 
Leks-Only 
 
Stratumf 1.0 0.34  0.6–1.7 18 9,923.8 0.002 0.32 49.9 29.2–85.4 
 
Stratum 2g 2.4 0.28   1.5–3.8 41 9,288.5 0.004 0.26 156.6 99.8–245.5 
 
Stratum 3h 2.7 0.31  1.6–4.3 25 5,161.5 0.005 0.29 53.6 32.8–87.7 
 
Stratum 4i 2.7 0.48  1.3–5.7 12 2,437.0 0.005 0.47 33.5 15.9–70.8 
 
State-wide j 2.0 0.19  1.4–2.7 96 26,810.8 0.004 0.41   293.6 213.9–403.0 
 
All Detectionsk 
 
Stratum 1 7.0 0.34 4.1–12.0 37 9,923.8 0.004 0.29  352.6 205.5–604.8 
 
Stratum 2 14.4 0.30  8.9–23.1 71  9,288.5 0.008 0.24  931.6 579.3–1,498.0 
 
Stratum 3 17.1 0.36  9.6–30.5 47 5,161.5 0.009 0.32  346.2 194.1–617.6 
______________________________________________________________________________________________________ 
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Table 2.4. Continued 
______________________________________________________________________________________________________ 
  Density  Encounter  Abundance 
 
Dataset D a 

cv(D) CIb  nc Ld  n/L  cv(n/L) Ne CI 
______________________________________________________________________________________________________ 
Stratum 4 15.4 0.46  7.5–31.9 20 2,437.0 0.008 0.43 192.0 93.0–396.4 
 
State-wide 12.3 0.23  8.5–17.9 175 26,810.8 0.007 0.36 1,822.4 1,253.7–2,649.1 
______________________________________________________________________________________________________  
a Density estimates (D) measured in leks/100 km² for the leks-only datasets and LPCs/100 km² for the all-detections datasets. 
 

b Ninety percent confidence intervals for density and abundance estimates. 
 

c Number of confirmed lek detections for the leks-only dataset and number of all observations for the all-detections dataset. 
 

d Transect length in kilometers. 
 

e Abundance estimates (N) measured in leks for the leks-only dataset and LPCs for the all-detections dataset. 
 

f Stratum 1 includes survey blocks within a Competitive Renewable Energy Zone (CREZ) and composed of ≥50% grassland. 
 
g Stratum 2 includes survey blocks not within a CREZ and composed of ≥50% grassland. 
 
h Stratum 3 includes survey blocks not within a CREZ and composed of >50% shrubland. 
 
i Stratum 4 includes survey blocks not within a CREZ and composed of >75% grassland/shrubland/grain field mix. 
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j Includes the estimated occupied LPC range for Texas. 
 
k The half-normal + cosine and hazard-rate models were model-averaged for the LPC density and abundance estimates.
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Figure 2.1. Lesser prairie-chicken (LPC) survey blocks in Texas for spring 2010 
 

(northeast and central region) and 2011 (southwest and west-central region; separated 
 

by dotted line) with the estimated LPC range, 2 Competitive Renewable Energy Zones 
 

(CREZ), and 4 strata.  Whites areas inside the occupied range were classified as non-LPC  
 
habitat and were not included in the sampling frame. 
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Figure 2.2.  Grouped distance data for leks only (n=96) and all detections (n=175)  
 
during 2010 and 2011 lesser prairie-chicken aerial surveys in Texas.
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Figure 2.3.  Predicted detectability for lesser prairie-chicken leks (n = 96) from 2010  
 
and 2011 aerial surveys in the Texas occupied range. 
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CHAPTER 3 

SPATIALLY-EXPLICIT MODELING OF LESSER PRAIRIE-CHICKEN LEK  
 

DENSITY IN TEXAS 
 
 

Abstract 

As with many other grassland birds, lesser prairie-chickens (LPC; Tympanuchus 

pallidicinctus) have experienced population declines in the Southern Great Plains and are 

a candidate species under the Endangered Species Act.  Lesser prairie-chickens now face 

a new potential disturbance, wind energy.  Texas currently produces the most wind power 

in the United States and west Texas in particular has been identified as a source for 

greater energy production.  Therefore, we estimated lek abundance in the Texas occupied 

LPC range and modeled vegetative and anthropogenic landscape characteristics 

associated with lek density.  To estimate the abundance of leks, we employed an aerial 

line-transect–based survey method to count LPC leks in spring 2010 and 2011.  We 

surveyed 208 randomly-selected 5,184-ha blocks in 4 separate strata.  Stratification was 

based on the greatest potential for wind energy development to impact LPC lek density.  

We then used hierarchical distance sampling to model the relationship between lek 

density and vegetative and anthropogenic features on the landscape.  Our best model 

included percent of the landscape composed of shrubland patches (i.e., patches composed 

of shrubs <5 m tall comprising ≥20% of the total vegetation) + paved road density + 

unpaved road density (AIC = 938.926, wi = 0.826).  Lek density peaked where ≈50% of 

the landscape was composed of shrubland patches and was greatest at lower paved and 
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unpaved road densities.  We estimated 248.5 leks (cv = 0.136) for our sampling frame.  

To promote greater LPC lek density in Texas, wildlife managers should strive to maintain 

landscapes composed of ≈50% shrubland patches and avoid increased road densities in 

regions with LPCs.  Our spatially-explicit models can be used to predict how lek density 

may change in response to changes in habitat conditions and road densities. 

 

Introduction 

The occupied range of lesser prairie-chickens (LPC; Tympanuchus pallidicinctus) 

has been reduced by >90% and this loss has been attributed to direct habitat loss from 

conversion of native grassland to cropland, livestock overgrazing, and invasion of woody 

plants, and indirect habitat loss from disturbance by energy development (Taylor and 

Guthery 1980, Applegate and Riley 1998, Hagen et al. 2004).  As a result, the LPC was 

petitioned for listing under the Endangered Species Act (ESA) as threatened or 

endangered in 1995 and in 1998 the U.S. Fish and Wildlife Service (USFWS) determined 

that listing was “warranted, but precluded” (USFWS 1998).  The listing was recently 

upgraded from Priority 8 to Priority 2, and among the reasons were an “increased 

magnitude of threats” from oil and wind energy development (USFWS 2008). 

An increased demand for renewable and non-renewable energy could impact 

prairie grouse species (Tympanachus and Centrocercus spp.) that inhabit native prairies 

and sagebrush steppe where there is high potential for wind, geothermal, and natural gas 

energy development (Hagen 2010, Jarnevich and Laubhan 2011, Naugle et al. 2011).  As 

a result, several recent studies have examined impacts of energy development on prairie 
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grouse and many of these studies demonstrate avoidance of anthropogenic structures and 

human disturbance that leads to habitat loss and fragmentation (Holloran 2005, Pitman et 

al. 2005, Walker et al. 2007, Doherty et al. 2008, Pruett et al. 2009).  For example, 

Naugle et al. (2011) compiled 7 scientific studies to examine the impact of energy 

development on greater sage-grouse (GSG; C. urophasianus) in the Intermountain West.  

Every study reported consistent negative responses of GSG to energy development, such 

as a decrease in lek attendance within or near gas fields and an avoidance of development 

by nesting hens.  Hagen (2010) conducted a meta-analysis of published and unpublished 

reports pertaining to prairie grouse and the impacts of energy development.  He found a 

general displacement of grouse by anthropogenic features and reduced demographic rates 

from energy development. 

Texas currently produces the most wind power in the United States (i.e., 22.0% of 

the nation’s total; American Wind Energy Association 2012) and 5 Competitive 

Renewable Energy Zones (CREZ) were designated in west Texas to encourage further 

wind energy development (Electric Reliability Council of Texas [ERCOT] 2006).  

Transmission lines are already being constructed to deliver wind-produced electricity 

from these CREZs to customers in urban centers (ERCOT 2006).  The 2 CREZs in the 

Texas Panhandle overlap approximately 27% (3,288 km2) of the known occupied range 

of LPCs in Texas.  Little is known about the current spatial distribution of LPC leks in 

the Texas range relative to features such as roads, transmission lines, and oil and gas 

development, and few peer-reviewed studies have investigated the potential impacts from 

wind facilities and associated infrastructure on prairie grouse (Kuvlesky et al. 2007). 
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Spatially-explicit models allow researchers to associate landscape and 

anthropogenic features with animal abundance or density (Hedley and Buckland 2004, 

Royle et al. 2004, Jarnevich and Laubhan 2011).  Identifying suitable habitat and 

predicting species occurrence is especially useful when balancing energy development 

and the needs of species of conservation concern, such as LPCs (Jarnevich and Laubhan 

2011).  Niche-based models incorporate presence-only data and formulate statistical 

relationships between species occurrence and environmental characteristics (Jarnevich 

and Laubhan 2011), but these models of maximum entropy are susceptible to problems 

associated with biased samples (e.g., non-random samples; Elith et al. 2011, Royle et al. 

2012).  Further, they only estimate prevalence, which is a relative measure of occurrence, 

not the probability of presence (Elith et al. 2011, Royle et al. 2012).  Hierarchical 

distance sampling models incorporate a detection function to estimate density and then 

relate landscape features to density (Royle et al. 2004); therefore, associations are not 

biased by incomplete detection of individuals. 

Lesser prairie-chicken populations in Texas have faced steady declines during the 

past 100 years (Jackson and DeArment 1963, Crawford and Bolen 1976a, Sullivan et al. 

2000) and Texas Parks and Wildlife Department (TPWD) estimated a minimum of 6,000 

birds from mostly road-based surveys located in high quality LPC habitat (Davis et al. 

2008).  Given inevitable wind energy development in west Texas where declining LPC 

populations occur (ERCOT 2006), there is a need for a better understanding of lek 

density in relation to anthropogenic and vegetative landscape features.  In addition, 

McRoberts et al. (2011) identified a need for more effective monitoring of LPC 
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populations given their conservation status.  Therefore, our objectives were to develop 

hierarchical distance sampling models of lek density relative to anthropogenic and 

vegetative landscape characteristics and estimate lek abundance in the Texas occupied 

range based on these models.  We identified landscape covariates that influence lek 

density to help guide LPC conservation efforts and inform wind facility siting decisions. 

 

Study Area 

The current estimated range of LPCs in Texas lies mostly in the northeast and 

southwest portions of the Texas Panhandle, with a few birds thought to be scattered 

throughout the central portion (Davis et al. 2008).  Our sampling frame encompassed 

86.9% of the Texas occupied LPC range (i.e., we excluded portions that were not LPC 

habitat such as riparian woodlands and cotton fields), while focusing on the intersection 

of current LPC range and the 2 CREZs.  The northeast region of the study area was 

comprised of a mixed-grass prairie dominated by sand sagebrush (Artemisia filifolia) and 

little bluestem (Schizachyrium scoparium).  The southwest region of the study area was a 

short-grass prairie dominated by shinnery oak (Quercus havardii) and little bluestem with 

some mesquite (Prosopis glandulosa).  Cotton, winter wheat, and grain sorghum were the 

main crops grown in the region (United States Department of Agriculture [USDA] 2008).  

The climate of the Panhandle was mostly dry and the majority of the precipitation 

occurred during the fall and spring (PRISM Climate Group 2011).  The southwest region 

of the Panhandle received an average of 40−51 cm of precipitation yearly and the 
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northeast region received an average of 50−61 cm of precipitation yearly (PRISM 

Climate Group 2011). 

 

Methods 

We used a stratified random sampling design with 4 strata (Thompson et al. 

1998).  The 4 strata were based on vegetative characteristics thought to influence LPC 

density (e.g., grassland, shrubland, agriculture, and a mosaic) and potential for wind 

energy development near LPC-occupied habitat.  For example, areas composed mostly of 

native and Conservation Reserve Program (CRP) grasslands were grouped together into 

one stratum because LPCs use this habitat for breeding, nesting, and brood-rearing 

(Crawford and Bolen 1976a, Taylor and Guthery 1980, Hagen et al. 2004).  We 

delineated vegetation types based on the USDA Texas cropland data layer (USDA 2008).  

The sampling frame was divided into 329, 7.2 km × 7.2 km surveys blocks.  At this size, 

we could complete 1 survey block per flight. 

The first stratum was composed of survey blocks that were within a CREZ and 

≥50% grassland (patches were native grassland, CRP, or idle cropland comprising >80% 

of the total vegetation).  The second stratum was composed of survey blocks that were 

also ≥50% grassland, but not within a CREZ.  The third stratum was composed of survey 

blocks with >50% shrubland (i.e., patches composed of shrubs <5 m tall comprising 

≥20% of the total vegetation) and this particular composition did not occur within a 

CREZ.  The fourth stratum was composed of survey blocks with a ≥75% combination of 

grassland/shrubland/grain field (this mosaic was comprised of 30–50% grassland, ≤50% 
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shrubland, and >0% grain field) and 1 of these blocks was located within a CREZ.  The 

specifications for this stratum were meant to include potential LPC habitat while 

excluding non-habitat, such as urban areas, water bodies, cotton fields, and woodland 

regions (e.g., riparian cottonwood [Populus deltoides] galleries). 

We allocated sample size to each stratum using the following formula 

gu ii
U ×=   

where ui is the number of survey blocks allocated to each stratum i, U is the total number 

of survey blocks allocated for the 2-year study and gi is the weighting factor for each 

stratum i.  The weighting factor was calculated as 

∑
=

r
rg

i

i

i

 

 
where ri was the rank for each stratum i.  The strata were ranked from 1 to 4 with 4 

representing the highest priority stratum.  Because we were most interested in examining 

LPC density in areas subject to wind energy development, we prioritized the strata based 

on the greatest potential for wind energy development to impact lek distribution.  We 

planned to survey 180 blocks over 2 survey years.  Based on the weighting factors, we 

randomly-selected 72 survey blocks in the first stratum, 54 in the second stratum, 36 in 

the third stratum, and 18 in the fourth stratum.  We selected some additional blocks from 

each stratum in case we were able to survey more blocks than planned. 

We used ArcGIS 9.3 (Environmental Systems Research Institute, Inc., Redlands, 

CA) to create a set of grid cells (7.2 km × 7.2 km) over the extent of the occupied LPC 

range in Texas.  We re-classified and grouped landcover based on the Texas cropland 
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data layer (USDA 2008) into 8 categories (e.g., cotton, grains, other crops, grassland or 

idle pasture, shrubland, woodland, open water, and barren or developed areas) and 

calculated the area of grassland, shrubland, and grain in each survey block.  We 

combined this information with the 2 CREZs in the Panhandle and assigned survey 

blocks to 1 of the 4 strata and then randomly-selected blocks from each stratum.  Of the 

329 survey blocks covering the sampling frame, we did not consider 44 blocks as 

potential LPC habitat because they were mostly urban, open water, cotton fields or 

woodland, and so were not included in any strata. 

We used ArcGIS 9.3 to generate a flight path for each survey block and measure 

the nearest distance from each detection to a transect (Hiby and Krishna 2001).  Transects 

were oriented north-south with 400-m spacing between them.  The observer’s global 

positioning system (GPS) unit recorded a track log of each flight path to provide the 

actual transect lengths that were surveyed.  We set the track logs to record points at least 

every 2 seconds. 

We divided our sampling frame into 2 regions for the 2 field seasons.  During 

spring 2010, we surveyed blocks in the northeast and central regions of the Panhandle 

(hereafter, northeast region) and during spring 2011, we surveyed blocks in the southwest 

and west-central regions (hereafter, southwest region).  We conducted our surveys from 

an R-22 helicopter (Robinson Helicopter Co., Torrance, CA), which seated the pilot and 

1 observer.  To train technicians, we also conducted flights early in each field season 

from an R-44 helicopter (Robinson Helicopter Co., Torrance, CA).  We conducted flights 

between early-March and late-May 2010–2011.  We followed the survey protocol 
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developed by McRoberts et al. (2011) (i.e., target altitude of 15 m above ground-level, 

target speed of 60 km/hr, survey between sunrise until ≈2.5 hr post-sunrise).  We did not 

include portions of transects that were surveyed outside the set survey protocol (e.g., 

when the pilot increased the helicopter’s altitude to avoid towns or feedlots) in the final 

analyses.  When LPCs were detected, the pilot deviated from transect and flew over the 

center of the group of birds or the center of the location from where birds flushed.  We 

used a GPS unit to record the exact location of detected LPCs. 

Data Analysis 

We selected11 vegetative and anthropogenic covariates that could influence lek 

density based on previous literature and our research objectives (Copelin 1963, Crawford 

and Bolen 1976a, Taylor and Guthery 1980, Woodward et al. 2001, Fuhlendorf et al. 

2002, Pruett et al. 2009; Table 3.1).  We divided each survey block into 4, 12.96-km2 

quadrats and calculated landscape covariates for each quadrat.  We developed 3 a priori 

model sets (Table 3.2).  Our vegetation model set included percent grassland (i.e., 

composed of native grassland, CRP, or idle cropland and comprising >80% of the total 

vegetation in a patch), percent shrubland (i.e., shrubs <5 m tall and comprising ≥20% of 

the total vegetation in a patch), percent grain field (e.g., corn, winter wheat, or grain 

sorghum), average grassland patch size (km2), average shrubland patch size (km2), and 

edge density of all patches (km/km2; Texas cropland data layer, USDA 2008).  We also 

included a quadratic term with percent grassland and percent shrubland because previous 

literature has suggested that optimum LPC habitat consists of native grassland 

interspersed with some shrubland (Copelin 1963, Taylor and Guthery 1980, Applegate 
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and Riley 1998).  Our road model set included paved road density (km/km2), unpaved 

road density (km/km2), and all road density (km/km2; U.S. Environmental Protection 

Agency 1998, Texas Department of Transportation 2011).  Our energy model set 

included density of transmission lines ≥69 kv (km/km2; Platts 2011) and active oil and 

gas well density (wells/km2; Railroad Commission of Texas 2011).  We performed a 

correlation analysis in program R (R Development Core Team 2011) for the landscape 

covariates (Appendix A).  We did not include variable(s) in the same model which had a 

pair-wise correlation ≥ 0.50 to avoid problems with multicollinearity (Ribic and Sample 

2001). 

We analyzed our data using the “distsamp” function of package “unmarked” 

(Fiske and Chandler 2011) in program R (Appendix B) which implements the 

multinomial-Poisson mixture model (hierarchical distance sampling; Royle et al. (2004).  

We binned our distance data into 7 intervals (e.g., 0–35 m, 35–50 m, 50–70 m, 70–90 m, 

90–120 m, 120–150 m, 150–179 m) and used the half-normal model to describe the 

detection function.  The 3 a priori model sets (vegetative covariates, road covariates, and 

energy infrastructure covariates) were used to model the lek density relationships (Table 

3.2).  For the vegetation model set, we did not allow percent grassland, percent 

shrubland, average grass patch size, or average shrub patch size to appear together in the 

same model to reduce the complexity and avoid multicollinearity among the covariates 

(Appendix A).  For the road and energy model sets, we included models for each 

individual variable and the covariates combined (Table 3.2).  However, for the model 

including all road density, we did not include either paved or unpaved road density to 
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avoid multicollinearity.  We determined competitive models as a model with ∆AIC ≤ 2 

and excluded models with uninformative parameters (Arnold 2010).  We considered the 

best models from each model set and combined those models in a final model set along 

with a null model (Table 3.3).  We evaluated goodness-of-fit of the best model(s) using a 

Freeman-Tukey chi-squared procedure with 1000 bootstrap replicates (“parboot”; Fiske 

and Chandler 2011).  We model averaged among our most competitive models to account 

for model selection uncertainty (Burnham and Anderson 2002) and provided robust 

inference and prediction.  We created a lek density map in ArcGIS for each 12.96-km2 

quadrat covering the LPC range in Texas based on the model-averaged predictions.  We 

estimated the total number of leks for our sampling frame and used the parametric 

procedure with 1,000 bootstrap replicates to estimate uncertainty in the lek abundance 

estimate (“parboot”; Fiske and Chandler 2011). 

 

Results 

During spring 2010 and 2011, we inventoried 208, 51.84-km2 survey blocks 

across the estimated LPC range in Texas.  We surveyed 88.6% of the sampling frame 

(10,782.7 of 12,167.1 km2) which was 61.6% of the Texas LPC occupied range.  We 

detected 96 leks. 

We found 2 competitive models from our vegetation set: percent shrubland (AIC 

= 945.098, AIC weight [wi] = 0.487) and percent shrubland + percent grain field (AIC = 

946.558, wi = 0.235; Table 3.2).  There was a quadratic relationship between lek density 

and percent shrubland, in which lek density peaked when ≈50% of a quadrat was 
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composed of shrubland patches (Fig. 3.1).  The model containing percent grain field was 

≤2 ∆AIC units of the top- ranked model and the parameter estimate did not differ from 0 

for percent grain field (β = 0.689, SE = 0.917, P = 0.453); therefore, it was probably an 

uninformative parameter. 

We found 2 competitive models from the road model set: paved road density + 

unpaved road density (AIC = 945.134, wi = 0.716) and unpaved road density (AIC = 

946.988, wi = 0.284; Table 3.2).  These 2 models were ≤2 ∆AIC units of each other; 

however both covariates were significant at α = 0.15 and therefore, both were informative 

(Arnold 2010).  Unpaved road density was inversely related to lek density in the model 

with and without paved road density (β = –0.316, SE = 0.118, P = 0.008; β = –0.307, SE 

= 0.118, P = 0.010, respectively; Fig. 3.2) and paved road density was also inversely 

related to lek density (β = –1.228, SE = 0.641, P = 0.056). 

We found 2 competitive models from the energy model set: transmission line 

density (AIC = 950.773, wi = 0.636) and transmission line density + active oil and gas 

well density (AIC = 9552.558, wi = 0.260; Table 3.2).  However, the model that included 

active oil and gas well density was ≤2 ∆AIC units of the top- ranked model and the 

parameter estimate did not differ from 0 (β = 0.018, SE = 0.037, P = 0.633) indicating 

that model was likely spurious (Arnold 2010).  The best model indicated an inverse 

relationship between lek density and transmission line density (β = –0.247, SE = 0.144, P 

= 0.086). 

We combined our competitive models from each set (e.g., percent shrubland, 

paved road density + unpaved road density, unpaved road density, and transmission line 
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density) and fit the final model set (Table 3.3).  The most competitive model included 

percent shrubland + paved road density + unpaved road density (AIC= 938.926, wi = 

0.826; Table 3.3).  Goodness of fit test indicated good model fit (χ2 = 0.864; P = 0.477).  

Based on this model, we estimated 248.5 leks (cv = 0.136) in our sampling frame. 

 

Discussion 

We found that percent of the landscape composed of shrubland patches (i.e., 

shrubs <5 m tall comprising ≥20% of the total vegetation) was a significant predictor of 

lek density.  Lek density peaked when ≈50% of the landscape was composed of 

shrubland patches (Fig. 3.1).  Lesser prairie-chicken habitat guidelines often recommend 

large tracts of ≈80% native grassland and ≈20% shrubs to support LPC populations (e.g., 

Bidwell 2003).  In Kansas, percent grassland or percent grassland and CRP were 

important predictors of LPC lek occurrence (Jarnevich and Laubhan 2011).  However, 

low-growing shrubs are an important component of LPC habitat for nesting and brood 

cover, a seasonal source of insects and mast, and thermal cover (Applegate and Riley 

1998, Pitman et al. 2005, Bell et al. 2010).  Copelin (1963) described LPC habitat as a 

“low to high density shrub savannah” with shrubs <1 m tall.  Applegate and Riley (1998) 

recommended a range of 30–45% shrub composition for nesting, brood-rearing, and fall 

and winter foraging.  At a large scale, Woodward et al. (2001) found that declining LPC 

populations in New Mexico, Oklahoma, and Texas were associated with less shrub 

composition, and a greater rate in loss of shrubland.  In addition, shrubs comprised 76.9% 

of the native vegetation of the landscapes in the study (Woodward et al. 2001).  Radio-
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marked birds in a survival study in southeastern New Mexico and northwestern 

Oklahoma occupied sites with a greater density of shrubs and had a higher survival rate 

for sites with >20% shrub cover (Patten et al. 2005).  Bell et al. (2010) similarly observed 

broods selecting for sites with greater shinnery oak canopy cover in southeast New 

Mexico. 

The landcover type classified as “shrubland” in our study included low-growing 

shrubs and grasses (USDA 2008), whereas the landcover type classified as “grassland” 

may have been a monoculture of lower quality lacking the habitat heterogeneity and 

structure that LPCs require (Applegate and Riley 1998).  Sullivan et al. (2000) noted that 

the 15,000 km2 of CRP that were established in the Texas Panhandle in 1985 were 

comprised mostly of monoculture stands of non-native grasses.  A heterogeneous 

environment of grasses, low-growing shrubs, and forbs is needed to support various LPC 

life stages, such as lekking, nesting, and brood-rearing (Taylor and Guthery 1980, Hagen 

et al. 2004, Fields et al. 2006).  Timmer (2012) estimated the lowest lek density in Texas 

for a stratum composed of >50% grassland (0.99 leks/100 km², cv = 0.336), which 

provides support for this explanation.  Further, Timmer (2012) estimated the highest lek 

density in Texas for the stratum composed of a mix of grassland, shrubland, and grain 

field (2.70 leks/100 km², cv = 0.480), followed by the stratum composed of >50% 

shrubland (2.65 leks/100 km², cv = 0.307).  Given the high inverse correlation between 

percent shrubland and percent grassland in our study (r = –0.86), it is logical to assume 

that a landscape supporting a high lek density with ≈50% shrubland patch composition 
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would contain ≈50% grassland patches.  However, percent grassland was not included in 

any of our competitive models as a significant predictor of lek density. 

Both paved road density and unpaved road density were included in our top 

model and both indicated an inverse relationship to lek density (Fig. 3.1); however paved 

road density had a stronger influence on lek density.  Pruett et al. (2009) concluded that 

highways do not appear to impede LPC movement, but noise and traffic associated with 

highways may render surrounding habitat unsuitable.  An avoidance of high road 

densities at a 5-km scale was a significant predictor of GPC lek locations in Kansas for 

hierarchical niche modeling (Gregory et al. 2011).  Niche modeling of LPC lek locations 

in Kansas showed an increase in lek habitat quality with increasing distance from a 

highway (Jarnevich and Laubhan 2011), while a separate study in Kansas observed an 

avoidance of paved roads by radio-marked hens (Hagen et al. 2011).  Lesser prairie-

chicken nests in Kansas were also located further than expected from paved and high-

traffic graveled roads even though otherwise-suitable habitat surrounded these features 

(Pitman et al. 2005).  Distance to 2-track or ungraded service road was a significant 

predictor of nest success and 9 of 11 nests were located further from an unpaved road 

than randomly expected for 1 study site (Pitman et al. 2005).  The authors speculated that 

this may have been due to predators traveling on the roads and preying on nests located 

near the roads. 

An avoidance of unpaved roads could also be due to disturbance from agricultural 

or oil and gas traffic.  For example, Crawford and Bolen (1976b) documented lek 

abandonment when a frequently-used road was built over a lek in native rangeland.  In a 
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natural gas field development region in western Wyoming, Holloran (2005) observed a 

decline in GSG lek attendance with increasing traffic volume on main haul roads and a 

decline in lek attendance for leks located within 3 km of a main haul road.  In a separate 

study in northwestern Wyoming, GSG hens nested further from disturbed leks (i.e., leks 

within 3 km of a natural gas well pad or road) than undisturbed leks (Lyon and Anderson 

2003).  The authors attributed this behavior to an avoidance of vehicular traffic associated 

with the gas wells rather than the wells themselves.  Several studies have documented an 

avoidance of prairie grouse to oil or gas wells (e.g., Pitman 2005, Walker et al. 2007, 

Doherty et al. 2008, Hagen et al. 2011), but the magnitude of activity associated with 

anthropogenic features, such as wells or roads, may be the reason for avoidance behavior 

rather than the actual feature.  Indeed, lesser prairie-chickens will use oil or gas pads, 2-

tracks, and gravel roads if the activity or traffic associated with these features is minimal 

(Crawford and Bolen 1976b, Jamison et al. 2002).  Therefore, LPCs in Texas may be 

responding to the vehicular traffic associated with oil or gas activity rather than the actual 

oil or natural gas extraction given that well density was not a significant predictor of lek 

density in our study. 

Transmission line density was not included in our top model, but it was a 

significant predictor of lek density and indicated an inverse relationship to lek density.  

Several other studies have also documented an avoidance of transmission lines by prairie 

grouse.  In an Oklahoma study, radio-marked LPCs avoided a power line in the study 

area by ≥100 m and few nests were found within 2 km of the power line; radio-marked 

greater prairie-chickens (GPC; T. cupido) also appeared to avoid the power line in the 
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study area (Pruett 2009).  Hagen (2010) found that prairie grouse displacement by 

anthropogenic features in several studies was greatest for transmission lines and roads.  

Hagen et al. (2011) examined the influence of anthropogenic features, such as 

transmission lines, improved roads, and oil or gas wells, on LPC hen habitat use and 

observed that transmission lines were 1 of the most avoided anthropogenic features.  Two 

separate studies in Kansas both documented avoidance of transmission lines and an 

increase in nesting or lek habitat quality with increasing distance from transmission line 

(Hagen et al. 2011, Jarnevich and Laubhan 2011).  No study has examined the reason 

behind prairie grouse avoidance of tall structures, such as transmission lines, but 1 

possible explanation for this avoidance may be that prairie chickens avoid the threat of 

predation from raptors perching on the structures (Pitman et al. 2005, Pruett et al. 2009). 

Habitat fragmentation was 1 of the reasons LPCs were issued a higher-priority 

listing for the ESA (USFWS 2008).  Fuhlendorf et al. (2002) found that habitat 

fragmentation, such as a reduction in the largest patch index and an increase in edge 

density were greatest for landscapes with declining LPC populations.  Further, GPCs 

breeding in larger, continuous tracts of native prairie in eastern Kansas had higher annual 

survival than GPCs breeding in a fragmented prairie, which exhibited lower annual 

survival than ever reported (McNew et al. 2011).  While edge density and average 

grassland and average shrubland patch size were not significant predictors of lek density 

in our study, paved and unpaved road densities and transmission line density were 

significant predictors.  These linear features can fragment contiguous rangeland and 
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result in habitat loss due to avoidance of these features by LPCs (Pruett et al. 2009, 

Hagen et al. 2011). 

The hierarchical modeling technique we used is different than the techniques 

utilized in other studies examining lek density and landscape features.  Therefore, 

different results can be expected.  We set up a formal study to provide spatial coverage of 

our sampling frame and used probabilistic sampling for the Texas occupied LPC range.  

We accounted for incomplete detection of leks by modeling a detection function and 

were thus, able to extrapolate our relationship between lek abundance and predictive 

covariates to the entire LPC range in Texas (Buckland et al. 2001).  In contrast, the niche 

models predicting lek occurrence in Kansas are not based on a formal statistical design 

which can introduce sampling biases (Jarnevich and Laubhan 2011, Gregory et al. 2011).  

For example, most lek locations used were sampled from roads only. 

Our study is unique for prairie grouse and well-designed, but it highlights the 

need for similar modeling efforts of landscape features and lek density throughout the 

LPC range.  Our best model may not accurately predict LPC lek density in Colorado, 

Kansas, New Mexico, or Oklahoma because the type and intensity of anthropogenic 

activity and its impact on LPCs may vary greatly in other portions of the LPC range.  

Further, grazing intensity, fire frequency, soil types, local weather, and a suite of other 

factors can cause structural and compositional differences in vegetation throughout the 

LPC range.  A regional habitat-priority map for LPCs throughout their range that is based 

on accurate models of lek density and landscape features is currently lacking (Hagen 

2010).  A consistent and detailed landcover layer for the LPC range is also lacking and 
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could improve modeling efforts.  Additionally, modeling lek density with change in 

habitat composition or anthropogenic features over time and examining spatially-explicit 

covariates at multiple scales could improve prediction of lek density in Texas and other 

regions (Woodward et al. 2001, Fuhlendorf et al. 2002). 

 

Management Implications 

Based on our spatial analysis, wildlife managers should strive to maintain ≈50% 

of the landscape as shrubland patches for higher LPC lek densities in Texas.  This can be 

achieved through habitat management techniques, such as prescribed burns or light 

grazing, which create a heterogeneous habitat of shrubs, grasses, and forbs (Applegate 

and Riley 1998, Bell et al. 2010).  Our greatest predicted lek density estimates occurred 

in Gray, Hemphill, and Lipscomb counties in the northeast Panhandle and Bailey, 

Cochran, and Yoakum counties in the southwest Panhandle (Fig. 3.2; Appendix C).  

Given that most of our lek detections also occurred in these counties (Fig. 3.2; Appendix 

C), the construction or frequent use of roads for agriculture, oil or natural gas 

development, or other purposes, should be avoided in these areas to reduce negative 

impacts on LPCs.  The construction of transmission lines for energy development should 

also be avoided in these areas.  Regions in which predicted lek density is low (e.g., 

Carson county) may be better suited for energy development if it is imminent within the 

Texas occupied range or habitat improvement projects to satisfy LPC management 

objectives.  Biologists, wildlife managers, and energy developers can also use our spatial 

models to predict how lek density may change in response to habitat management 
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strategies or activities promoting the construction or use of roads within the Texas 

occupied range.  This information will be necessary if LPCs are listed on the ESA.  

Another logical application of our spatial models would be to predict lek density outside 

the Texas occupied range to give wildlife managers an indication of other areas that could 

be targeted for LPC surveys or conservation efforts.  However, our models should not be 

used to predict absolute density outside of our sampling frame. 
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Table 3.1.  Landscape covariates included in spatial models for predicting lesser prairie-chicken lek density in Texas  
 
 and a description of each covariate. 
______________________________________________________________________________________________________ 
 
Covariatea   Description      
______________________________________________________________________________________________________ 
GRASS   Percent of the quadrat composed of grassland patches (native grassland, CRP, or idle  
    cropland comprising >80% of the total vegetation) including a quadratic term. 
  
SHRUB  Percent of the quadrat composed of shrubland patches (shrubs <5 m tall comprising  
   ≥20% of the total vegetation) including a quadratic term. 
 
AGP   Average patch size (km2) of grassland patches that overlapped the quadrat. 

 
ASP  Average patch size (km2) of shrubland patches that overlapped the quadrat. 
 
GRAIN  Percent of the quadrat composed of grain field patches (e.g., winter wheat, corn, or  
   grain sorghum). 
 
EDGE  Edge density for all landcover patches (km/km2). 
 
HWY  Paved road density (km/km2). 
 
DIRT  Unpaved road density (km/km2). 
 
ROADS  Paved and unpaved road density (km/km2). 
 
TRANSM  Transmission line (>69 kv) density (km/km2). 
______________________________________________________________________________________________________ 
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Table 3.1. Continued 
______________________________________________________________________________________________________ 
 
Covariatea   Description      
______________________________________________________________________________________________________ 
 
WELL  Active oil and gas well density (wells/km2). 
______________________________________________________________________________________________________ 
a Each covariate estimated for a 12.96-km2 quadrat. 
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Table 3.2.  Three model sets of hierarchical distance sampling models predicting lesser prairie-chicken lek density in Texas.   
 
For each candidate model, we give –2×log-likelihood (–2LL), number of parameters (K), Akaike’s Information  
 

Criterion (AIC), difference in AIC compared to lowest AIC of the model set (∆i), AIC weight (wi), predicted lek abundance  
 
(N), and coefficient of variation for abundance (cv). 
______________________________________________________________________________________________________ 
 
Modela  –2LL K AIC ∆i wi  Nb  

cv 
______________________________________________________________________________________________________ 
 
Vegetation Model Set   
 
SHRUB  937.098 4 945.098 0.000 0.487 246.3 0.136 
  
SHRUB + GRAIN 936.558 5 946.558 1.460 0.235 245.1 0.176 
  
SHRUB + GRAIN + EDGE 936.026 6 948.026 2.927 0.113 245.3 0.137 
 
GRASS  941.501 4 949.501 4.403 0.054 243.3 0.130 
 
GRASS + EDGE  940.673 5 950.673 5.575 0.030 243.5 0.145 
 
GRAIN + EDGE  944.137 4 952.137 7.039   0.014 148.5 0.104  
     
AGP  946.475 3 952.475 7.377 0.012 248.9 0.132 
  
AGP + EDGE  944.570 4 952.570 7.471   0.012 249.9 0.137 
_____________________________________________________________________________________________________  
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Table 3.2. Continued 
______________________________________________________________________________________________________ 
 
Modela  –2LL K AIC ∆i wi Nb      

cv 
______________________________________________________________________________________________________ 
ASP + EDGE  945.029 4 953.029 7.931   0.009 251.0 0.134 
 
AGP + GRAIN + EDGE 943.516 5 953.516 8.417   0.007 250.3 0.137 
 
AGP + GRAIN  945.642 4 953.642 8.544   0.007 249.2 0.136  
 
GRAIN  947.967 3 953.967 8.869   0.006 250.1 0.134 
  
ASP  948.042 3 954.042 8.943   0.006 250.7 0.137 
  
ASP + GRAIN + EDGE 944.108 5 954.108 9.009   0.005 251.2 0.132  
  
ASP + GRAIN  947.489 4 955.489 10.391   0.003 251.1 0.134 
 
SHRUB + EDGE  961.846 5 971.846 26.747 <0.001 145.9 0.118 
 
GRASS + GRAIN  964.081 5 974.081 28.983 <0.001 244.4 0.136 
  
GRASS + GRAIN + EDGE 963.872 6 975.872 30.774 <0.001 144.6 0.102 
  
EDGE  969.874 3 975.874 30.775 <0.001 148.2 0.099 
______________________________________________________________________________________________________
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Table 3.2. Continued 
______________________________________________________________________________________________________ 
 
Modela  –2LL K AIC ∆i wi Nb      

cv 
______________________________________________________________________________________________________ 
Road Model Set  
 
HWY + DIRT  937.134 4 945.134 0.000 0.716 249.5 0.135 
 
DIRT  940.988 3 946.988 1.854   0.284 251.9 0.139 
 
ROADS  961.990 3 967.990 22.855 <0.001 249.8 0.134  
  
HWY  968.957 3 974.957 29.823 <0.001 246.6 0.137 
 
Energy Model Set 
 
TRANSM  944.773 3 950.773 0.000   0.636 248.3 0.132 
 
TRANSM + WELL 944.558 4 952.558 1.785   0.260 247.9 0.133 
  
WELL  948.394 3 954.394 3.621    0.104 249.6 0.140  
______________________________________________________________________________________________________ 

a Covariates described in Table 3.1. 
 
b Predicted lek abundance for each model. 
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Table 3.3.  Best overall hierarchical distance sampling models predicting lesser prairie-chicken lek density in Texas.  
 
 For each candidate model, we give –2×log-likelihood (–2LL), number of parameters (K), Akaike’s Information  
 

Criterion (AIC), difference in AIC compared to lowest AIC of the model set (∆i), AIC weight (wi), predicted lek abundance  
 
(N), and coefficient of variation for abundance (cv). 
______________________________________________________________________________________________________ 
 
Modela –2LL K AIC ∆i wi  Nb      

cv 
______________________________________________________________________________________________________ 
    
SHRUB + HWY + DIRT 926.926 6 938.926 0.000   0.826 248.5 0.136 
 
TRANSM + HWY + DIRT 934.467 5 944.467 5.540   0.052 249.0 0.135 
 
SHRUB 937.098 4 945.098 6.172   0.038 246.3 0.136 
 
HWY + DIRT 937.150 4 945.150 6.224   0.037 249.5 0.135 
 
DIRT + TRANSM 937.584 4 945.584 6.657   0.030 250.9 0.144 
 
DIRT 940.988 3 946.988 8.062   0.015 251.9 0.139 
 
TRANSM 944.773 3 950.773 11.846   0.002 248.3 0.132 
 
NULL  948.407 2 952.407 13.480   0.001 249.7 0.136 
 
SHRUB + HWY +DIRT+TRANSM 949.199 7 963.199 24.273 <0.001 146.5 0.101  
______________________________________________________________________________________________________ 
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Table 3.3. Continued 
______________________________________________________________________________________________________ 
 
Modela  –2LL K AIC ∆i wi Nb      cv 
______________________________________________________________________________________________________ 
SHRUB + DIRT +TRANSM 952.503 6 964.503 25.577 <0.001 248.9   0.144 
 
SHRUB + DIRT 956.009 5 966.009 27.082 <0.001 148.1 0.102 
 
SHRUB + TRANSM 956.967 5 966.967 28.040 <0.001 244.8 0.133 
______________________________________________________________________________________________________ 
a Covariates described in Table 3.1. 
 
b Predicted lek abundance for each model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   Texas Tech University, Jennifer M. Timmer, May 2012 
  
 

96 
 

 
 

 
Figure 3.1.  Predicted lesser prairie-chicken lek density in response to the percent of the landscape composed of shrubland  
 
patches and road density (km/km2) in the Texas occupied range.
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Figure 3.2. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats  
 
covering the Texas occupied LPC based on a hierarchical distance sampling model.   
 
Whites areas inside the occupied range were classified as non-LPC habitat and were not  
 
included in the sampling frame. 
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CORRELATIONS AMONG LANDSCAPE COVARIATES 
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Table A.1.  Table of Pearson’s correlation coefficients (r) and p-values (P) for landscape covariates used in spatially-explicit  
 
models predicting lesser prairie-chicken lek density in the Texas occupied range. 
 

Covariatesa    GRASS SHRUB GRAIN AGP ASP EDGE TRANSM HWY DIRT WELL ROADS 
                          

              P:           

GRASS     <0.001   0.002 <0.001 <0.001 <0.001 >0.999   0.333 >0.999 <0.001 >0.999 

SHRUB   –0.828   <0.001 <0.001 <0.001   0.226 >0.999 >0.999 <0.001 <0.001 <0.001 

GRAIN   –0.136 –0.368   <0.001   0.006   0.001 >0.999   0.036 <0.001 <0.001 <0.001 

AGP     0.382 –0.265 –0.165     0.612 <0.001 >0.999   0.015   0.001   0.047 <0.001 

ASP –0.398   0.500 –0.127 –0.070   <0.001   0.897   0.065 <0.001 >0.999 <0.001 

EDGE r: –0.251   0.086   0.148 –0.399 –0.298   >0.999 <0.001 <0.001   0.047 <0.001 

TRANSM   –0.044   0.036 –0.002   0.019 –0.063 –0.014     0.141 >0.999   0.033   0.156 

HWY   –0.080 –0.029   0.109 –0.119 –0.102   0.205   0.092   >0.999 <0.001 <0.001 

DIRT     0.059 –0.279   0.326 –0.144 –0.204   0.241   0.051   0.021     0.445 <0.001 

WELL   –0.310   0.385 –0.213 –0.106   0.037   0.106   0.111   0.191   0.075   >0.999 

ROADS     0.005 –0.246   0.330 –0.184 –0.224   0.311   0.093   0.563   0.838   0.042   

                          

  
a Covariates described in Table 3.1. 
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R SCRIPT FOR HIERARCHICAL DISTANCE SAMPLING 
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# Load the needed R-packages. # 
library(unmarked) 
library(Rcmdr) 
 
# Load the data. # 
DIST = read.table("C: 

/distdata.csv",header=TRUE,colClasses=c("factor","numeric","numeric","numeri
c"),sep=",") 

LENGTHS = read.table("C:/ length.csv",header=FALSE,colClasses="numeric",sep=",") 
COVS = read.table("C:/ 

covs.csv",header=TRUE,colClasses=c(rep("numeric",11),"factor","factor"),sep=",
") 

 
# Check correlations. # 
covs.corr =  

rcorr.adjust(COVS[,c("GRASS","SHRUB","GRAIN","AGP" 
"ASP","EDGE","TRANSM","HWY","DIRT","ROADS","WELL")], 
type="pearson") 
 

# Show summary of correlations. # 
covs.corr 
 
# Export correlation statistics to table. # 
write.table(covs.corr$R$r,file="C:/ 

corr_r.csv",append=FALSE,sep=",",row.names=FALSE,col.names=TRUE) 
write.table(covs.corr$P,file="C:/ 

corr_p.csv",append=FALSE,sep=",",row.names=FALSE,col.names=TRUE) 
 
# Do these things to standardize your covariates. # 
mean.transm = mean(COVS$TRANSM) 
std.transm = sd(COVS$TRANSM) 
COVS$RETRANSM = (COVS$TRANSM-mean.transm)/std.transm 
 
mean.grass = mean(COVS$GRASS) 
std.grass = sd(COVS$GRASS) 
COVS$REGRASS = (COVS$GRASS-mean.grass)/std.grass 
COVS$REGRASS2 = COVS$REGRASS*COVS$REGRASS 
 
mean.shrub = mean(COVS$SHRUB) 
std.shrub = sd(COVS$SHRUB) 
COVS$RESHRUB = (COVS$SHRUB-mean.shrub)/std.shrub 
COVS$RESHRUB2 = COVS$RESHRUB*COVS$RESHRUB 
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mean.dirt = mean(COVS$DIRT) 
std.dirt = sd(COVS$DIRT) 
COVS$REDIRT = (COVS$DIRT-mean.dirt)/std.dirt 
 
# Show summary of covariate data. # 
summary(COVS) 
 
# Put the data into "multinomial format" using DistData function. # 
yDat = formatDistData(DIST, distCol="distance", transectNameCol="transect", 

dist.breaks=c(0, 35, 50, 70, 90, 120, 150, 179)) 
 
# Make the unmarkedFrameDS. # 
umf = unmarkedFrameDS(y=as.matrix(yDat), siteCovs=COVS, survey="line", 

dist.breaks=c(0, 35, 50, 70, 90, 120, 150, 179), tlength=LENGTHS$V1, 
unitsIn="m") 

 
# Show summary of the unmarkedFrame. # 
summary(umf)      
 
# Plot histogram of the detection distances. # 
hist(umf, xlab="distance (m)", main="", cex.lab=0.8, cex.axis=0.8) 
 
# Fit the base detection functions and pick one to use. # 
hn = distsamp(~1 ~1, umf, keyfun="halfnorm", output="density") 
haz = distsamp(~1 ~1, umf, keyfun="hazard", output="density") 
unif = distsamp(~1 ~1, umf, keyfun="uniform", output="density") 
CDS_fitlist = fitList(hn,haz,unif)        # Create the fit list.# 
ms1 = modSel(CDS_fitlist)      # Rank the models by AIC.# 
 
# Create a data frame of the model set's statistics. # 
MS1.modelstats = as(ms1, "data.frame") 
 
# Look at the hazard-rate CDS model (poorly performing model). # 
haz 
backTransform(haz, type="state") 
hist(haz, xlab="distance (m)", main="", cex.lab=0.8, cex.axis=0.8) 
 
# Look at the half-normal CDS model. # 
hn 
backTransform(hn, type="state") 
backTransform(hn, type="det") 
hist(hn, xlab="distance (m)", main="", cex.lab=0.8, cex.axis=0.8) 
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# Fit the roads model set. # 
hn_hwy = distsamp(~1 ~HWY, umf, keyfun="halfnorm", output="density") 
hn_dirt = distsamp(~1 ~REDIRT, umf, keyfun="halfnorm", output="density") 
hn_hwy_dirt = distsamp(~1 ~HWY+REDIRT, umf, keyfun="halfnorm", 

output="density") 
hn_roads = distsamp(~1 ~ROADS, umf, keyfun="halfnorm", output="density") 
roads_fitlist = fitList(hn_hwy,hn_dirt,hn_roads) 
ms2 = modSel(roads_fitlist) 
 
# Look at break-down of top roads models; hwy and dirt are both significant. # 
hn_hwy_dirt 
hn_dirt 
 
# Create a data frame of the model set's statistics. # 
MS2.modelstats = as(ms2, "data.frame") 
 
# Export table with AIC values for roads model set. # 
write.table(cbind(MS2.modelstats$formula,MS2.modelstats$negLogLike,MS2.modelstat

s$nPars,MS2.modelstats$AIC,MS2.modelstats$delta,MS2.modelstats$AICwt),fil
e="C:/roads_models.csv",append=FALSE,sep=",",row.names=FALSE,col.names
=TRUE) 

 
# Fit the energy model set. # 
hn_transm = distsamp(~1 ~RETRANSM, umf, keyfun="halfnorm", output="density") 
hn_well = distsamp(~1 ~WELL, umf, keyfun="halfnorm", output="density") 
hn_transm_well = distsamp(~1 ~RETRANSM+WELL, umf, keyfun="halfnorm", 

output="density") 
energy_fitlist = fitList(hn_transm,hn_well,hn_transm_well) 
ms3 = modSel(energy_fitlist) 
 
# Look at break-down of top energy models; oil and gas not significant. # 
hn_transm 
hn_transm_well 
 
# Create a data frame of the model set's statistics. # 
MS3.modelstats = as(ms3, "data.frame") 
 
# Export table with AIC values for energy model set. # 
write.table(cbind(MS3.modelstats$formula,MS3.modelstats$negLogLike,MS3.modelstat

s$nPars,MS3.modelstats$AIC,MS3.modelstats$delta,MS3.modelstats$AICwt),fil
e="C:/ 
energy_models.csv",append=FALSE,sep=",",row.names=FALSE,col.names=TR
UE) 
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# Fit the vegetation model set. # 
hn_grass = distsamp(~1 ~REGRASS+REGRASS2, umf, keyfun="halfnorm", 

output="density") 
hn_asp = distsamp(~1 ~ASP, umf, keyfun="halfnorm", output="density") 
hn_agp = distsamp(~1 ~AGP, umf, keyfun="halfnorm", output="density") 
hn_shrub = distsamp(~1 ~RESHRUB+RESHRUB2, umf, keyfun="halfnorm", 

output="density") 
hn_grain = distsamp(~1 ~GRAIN, umf, keyfun="halfnorm", output="density") 
hn_edge = distsamp(~1 ~EDGE, umf, keyfun="halfnorm", output="density") 
hn_grass_grain = distsamp(~1 ~REGRASS+REGRASS2+GRAIN, umf, 

keyfun="halfnorm", output="density") 
hn_asp_grain = distsamp(~1 ~ASP+GRAIN, umf, keyfun="halfnorm", output="density") 
hn_agp_grain = distsamp(~1 ~AGP+GRAIN, umf, keyfun="halfnorm", 

output="density") 
hn_shrub_grain = distsamp(~1 ~RESHRUB+RESHRUB2+GRAIN, umf, 

keyfun="halfnorm", output="density") 
hn_grass_edge = distsamp(~1 ~REGRASS+REGRASS2+EDGE, umf, 

keyfun="halfnorm", output="density") 
hn_asp_edge = distsamp(~1 ~ASP+EDGE, umf, keyfun="halfnorm", output="density") 
hn_agp_edge = distsamp(~1 ~AGP+EDGE, umf, keyfun="halfnorm", output="density") 
hn_grain_edge = distsamp(~1 ~GRAIN+EDGE, umf, keyfun="halfnorm", 

output="density") 
hn_shrub_edge = distsamp(~1 ~RESHRUB+RESHRUB2+EDGE, umf, 

keyfun="halfnorm", output="density") 
hn_grass_grain_edge = distsamp(~1 ~REGRASS+REGRASS2+GRAIN+EDGE, umf, 

keyfun="halfnorm", output="density") 
hn_asp_grain_edge = distsamp(~1 ~ASP+GRAIN+EDGE, umf, keyfun="halfnorm", 

output="density") 
hn_agp_grain_edge = distsamp(~1 ~AGP+GRAIN+EDGE, umf, keyfun="halfnorm", 

output="density") 
hn_shrub_grain_edge = distsamp(~1 ~RESHRUB+RESHRUB2+GRAIN+EDGE, umf, 

keyfun="halfnorm", output="density") 
veg_fitlist = 

fitList(hn_grass,hn_asp,hn_agp,hn_shrub,hn_grain,hn_edge,hn_asp_grain,hn_agp
_grain,hn_grass_grain,hn_shrub_grain,hn_grass_edge,hn_asp_edge,hn_agp_edge,
hn_shrub_edge,hn_grain_edge,hn_grass_grain_edge,hn_asp_grain_edge,hn_agp_
grain_edge,hn_shrub_grain_edge) 

ms4 = modSel(veg_fitlist) 
 
# Look at break-down of top veg models; grain not significant. # 
hn_shrub 
hn_shrub_grain 
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# Create a data frame of the model set's statistics. # 
MS4.modelstats = as(ms4, "data.frame") 
 
# Export table with AIC values for veg model set. # 
write.table(cbind(MS4.modelstats$formula,MS4.modelstats$negLogLike,MS4.modelstat

s$nPars,MS4.modelstats$AIC,MS4.modelstats$delta,MS4.modelstats$AICwt),fil
e="C:/veg_models.csv",append=FALSE,sep=",",row.names=FALSE,col.names=
TRUE) 

 
# Best models from the vegetation, road, and energy model sets. # 
pre_best_fitlist = fitList(hn,hn_dirt,hn_hwy_dirt,hn_transm,hn_shrub) 
ms5 = modSel(pre_best_fitlist) 
 
# Create a data frame of the best models from each set. # 
MS5.modelstats = as(ms5, "data.frame") 
 
# Export table with AIC values for best of each model set. # 
write.table(cbind(MS5.modelstats$formula,MS5.modelstats$negLogLike,MS5.modelstat

s$nPars,MS5.modelstats$AIC,MS5.modelstats$delta,MS5.modelstats$AICwt),fil
e="C:/ 
best_each_models.csv",append=FALSE,sep=",",row.names=FALSE,col.names=T
RUE) 

 
# Fit the final model set. # 
hn = distsamp(~1 ~1, umf, keyfun="halfnorm", output="density") 
hn_shrub = distsamp(~1 ~RESHRUB+RESHRUB2, umf, keyfun="halfnorm", 

output="density") 
hn_dirt = distsamp(~1 ~REDIRT, umf, keyfun="halfnorm", output="density") 
hn_hwy_dirt = distsamp(~1 ~HWY+REDIRT, umf, 

keyfun="halfnorm",output="density", starts=c(-8.577,-1.228,-0.316,4.48)) 
hn_transm = distsamp(~1 ~TRANSM, umf, keyfun="halfnorm", output="density") 
hn_shrub_dirt = distsamp(~1 ~RESHRUB+RESHRUB2+REDIRT, umf, 

keyfun="halfnorm", output="density", method=”Nelder-Mead”) 
hn_shrub_dirt #look at model breakdown to get starting values.# 
hn_shrub_dirt = distsamp(~1 ~RESHRUB+RESHRUB2+REDIRT, umf, 

keyfun="halfnorm", output="density",starts=c(-9.014,0.529,-0.286,-0.286,9.79)) 
hn_shrub_transm = distsamp(~1 ~RESHRUB+RESHRUB2+RETRANSM, umf, 

keyfun="halfnorm", output="density") 
hn_dirt_transm = distsamp(~1 ~REDIRT+RETRANSM, umf, keyfun="halfnorm", 

output="density") 
hn_shrub_hwy_dirt = distsamp(~1 ~RESHRUB+RESHRUB2+HWY+REDIRT, umf, 

keyfun="halfnorm", output="density") 
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hn_shrub_hwy_dirt_transm = distsamp(~1 
~RESHRUB+RESHRUB2+HWY+REDIRT+RETRANSM, umf, 
keyfun="halfnorm", output="density",method="Nelder-Mead") 

hn_shrub_hwy_dirt_transm #look at model breakdown to get starting values.# 
hn_shrub_hwy_dirt_transm = distsamp(~1 

~RESHRUB+RESHRUB2+HWY+REDIRT+RETRANSM, umf, 
keyfun="halfnorm", output="density",starts=c(-8.905,0.556,-0.292,-1.045,-
0.281,-0.196,9.59)) 

hn_shrub_dirt_transm = distsamp(~1 
~RESHRUB+RESHRUB2+REDIRT+RETRANSM, umf, keyfun="halfnorm", 
output="density") 

hn_transm_hwy_dirt = distsamp(~1 ~RETRANSM+HWY+REDIRT, umf, 
keyfun="halfnorm", output="density") 

fitsbest = 
fitList(hn,hn_shrub,hn_dirt,hn_transm,hn_hwy_dirt,hn_shrub_transm,hn_dirt_tra
nsm,hn_shrub_hwy_dirt,hn_shrub_hwy_dirt_transm,hn_shrub_dirt_transm,hn_tra
nsm_hwy_dirt,hn_shrub_dirt) 

ms6 = modSel(fitsbest) 
 
# Examine all the coefficents and SEs for the final model set. # 
coef(ms6) 
SE(ms6) 
 
# Create a data frame of the final model set's statistics. # 
MS6.modelstats = as(ms6, "data.frame") 
 
# Export table with AIC values for top models. # 
write.table(cbind(MS6.modelstats$formula,MS6.modelstats$negLogLike,MS6.modelstat

s$nPars,MS6.modelstats$AIC,MS6.modelstats$delta,MS6.modelstats$AICwt),fil
e="C:/ 
top_models.csv",append=FALSE,sep=",",row.names=FALSE,col.names=TRUE) 

 
# Change units in best model to KM^2. # 
hn_shrub_hwy_dirt_km2 = distsamp(~1 ~RESHRUB+RESHRUB2+HWY+REDIRT, 

umf, keyfun="halfnorm", output="density", unitsOut="kmsq") 
 
# The best model. # 
hn_shrub_hwy_dirt_km2 
backTransform(hn_shrub_hwy_dirt_km2, type="det") 
exp(coef(hn_shrub_hwy_dirt_km2, type="state",altNames=TRUE)) 
 
# Make a list of the best model from the final model set. # 
topfits = fitList(hn_shrub_hwy_dirt_km2) 
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ms7 = modSel(topfits) 
 
# Create a data frame of the model set's statistics. # 
MS7.modelstats = as(ms7, "data.frame") 
 
# GOF Analysis function. # 
freeTuke = function(fm) { 
  observed = getY(fm@data) 
  expected = fitted(fm) 
  sum((sqrt(observed)-sqrt(expected))^2) 
} 
 
# Parametric bootstrap GOF Test for the top model, it takes awhile. # 
GOF_hn_shrub_hwy_dirt_km2 = parboot(hn_shrub_hwy_dirt_km2, freeTuke, 

nsim=1000, report=2) 
plot(GOF_hn_shrub_hwy_dirt_km2) 
 
# Show the GOF statistics. # 
GOF_hn_shrub_hwy_dirt_km2 
 
# Get AIC weights of top model. # 
best.AICwt = MS7.modelstats$AICwt 
 
# Change units in all models to KM^2. # 
hn_shrub_grain_km2 = distsamp(~1 ~RESHRUB+RESHRUB2+GRAIN, umf, 

keyfun="halfnorm", output="density", unitsOut="kmsq") 
hn_shrub_edge_km2 = distsamp(~1 ~RESHRUB+RESHRUB2+EDGE, umf, 

keyfun="halfnorm", output="density", unitsOut="kmsq") 
hn_shrub_grain_edge_km2 = distsamp(~1 ~RESHRUB+RESHRUB2+GRAIN+EDGE, 

umf, keyfun="halfnorm", output="density", unitsOut="kmsq") 
hn_grass_grain_edge_km2 = distsamp(~1 ~REGRASS+REGRASS2+GRAIN+EDGE, 

umf, keyfun="halfnorm", output="density", unitsOut="kmsq") 
hn_grain_edge_km2 = distsamp(~1 ~GRAIN+EDGE, umf, keyfun="halfnorm", 

output="density", unitsOut="kmsq") 
hn_agp_km2 = distsamp(~1 ~AGP, umf, keyfun="halfnorm", output="density", 

unitsOut="kmsq") 
hn_agp_edge_km2 = distsamp(~1 ~AGP+EDGE, umf, keyfun="halfnorm", 

output="density", unitsOut="kmsq") 
hn_asp_km2 = distsamp(~1 ~ASP, umf, keyfun="halfnorm", output="density", 

unitsOut="kmsq") 
hn_asp_edge_km2 = distsamp(~1 ~ASP+EDGE, umf, keyfun="halfnorm", 

output="density", unitsOut="kmsq") 
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hn_agp_grain_edge_km2 = distsamp(~1 ~AGP+GRAIN+EDGE, umf, 
keyfun="halfnorm", output="density", unitsOut="kmsq") 

hn_agp_grain_km2 = distsamp(~1 ~AGP+GRAIN, umf, keyfun="halfnorm", 
output="density", unitsOut="kmsq") 

hn_grain_km2 = distsamp(~1 ~GRAIN, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_asp_grain_edge_km2 = distsamp(~1 ~ASP+GRAIN+EDGE, umf, 
keyfun="halfnorm", output="density", unitsOut="kmsq") 

hn_asp_grain_km2 = distsamp(~1 ~ASP+GRAIN, umf, keyfun="halfnorm", 
output="density", unitsOut="kmsq") 

hn_grass_grain_km2 = distsamp(~1 ~REGRASS+REGRASS2+GRAIN, umf, 
keyfun="halfnorm", output="density", unitsOut="kmsq") 

hn_grass_edge_km2 = distsamp(~1 ~REGRASS+REGRASS2+EDGE, umf, 
keyfun="halfnorm", output="density", unitsOut="kmsq") 

hn_well_km2 = distsamp(~1 ~WELL, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_transm_km2 = distsamp(~1 ~RETRANSM, umf, keyfun="halfnorm", 
output="density", unitsOut="kmsq") 

hn_transm_well_km2 = distsamp(~1 ~RETRANSM+WELL, umf, keyfun="halfnorm", 
output="density", unitsOut="kmsq") 

hn_hwy_km2 = distsamp(~1 ~HWY, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_edge_km2 = distsamp(~1 ~EDGE, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_dirt_km2 = distsamp(~1 ~REDIRT, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_roads_km2 = distsamp(~1 ~ROADS, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_km2 = distsamp(~1 ~1, umf, keyfun="halfnorm", output="density", 
unitsOut="kmsq") 

hn_dirt_transm_km2 = distsamp(~1 ~REDIRT+RETRANSM, umf, keyfun="halfnorm", 
output="density", unitsOut="kmsq") 

hn_hwy_dirt_km2= distsamp(~1 ~HWY+REDIRT, umf, 
keyfun="halfnorm",output="density", starts=c(-8.577,-1.228,-
0.316,4.48),unitsOut="kmsq") 

hn_grass_km2= distsamp(~1 ~REGRASS+REGRASS2, umf, keyfun="halfnorm", 
output="density",unitsOut="kmsq") 

hn_shrub_dirt_km2= distsamp(~1 ~RESHRUB+RESHRUB2+REDIRT, umf, 
keyfun="halfnorm", output="density",starts=c(-9.014,0.529,-0.286,-
0.286,9.79),unitsOut="kmsq") 

hn_shrub_dirt_transm_km2= distsamp(~1 
~RESHRUB+RESHRUB2+REDIRT+RETRANSM, umf, keyfun="halfnorm", 
output="density",unitsOut="kmsq") 
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hn_shrub_hwy_dirt_transm_km2= distsamp(~1 
~RESHRUB+RESHRUB2+HWY+REDIRT+RETRANSM, umf, 
keyfun="halfnorm", output="density",starts=c(-8.905,0.556,-0.292,-1.045,-
0.281,-0.196,9.59),unitsOut="kmsq") 

hn_transm_hwy_dirt_km2= distsamp(~1 ~RETRANSM+HWY+REDIRT, umf, 
keyfun="halfnorm", output="density",unitsOut="kmsq") 

hn_shrub_transm_km2= distsamp(~1 ~RESHRUB+RESHRUB2+RETRANSM, umf, 
keyfun="halfnorm", output="density",unitsOut="kmsq") 

hn_shrub_km2= distsamp(~1 ~RESHRUB+RESHRUB2, umf, keyfun="halfnorm", 
output="density",unitsOut="kmsq") 

 
# Load grid of covariates for prediction of population size. # 
GRID = read.table("C:/ predict2.csv",header=TRUE,sep=",") 
 
# Do these things to standardize your covariates in the prediction grid, but use the mean 

and std from original data. # 
GRID$RETRANSM = (GRID$TRANSM-mean.transm)/std.transm 
GRID$REDIRT = (GRID$DIRT-mean.dirt)/std.dirt 
GRID$REGRASS = (GRID$GRASS-mean.grass)/std.grass 
GRID$REGRASS2 = GRID$REGRASS*GRID$REGRASS 
GRID$RESHRUB = (GRID$SHRUB-mean.shrub)/std.shrub 
GRID$RESHRUB2 = GRID$RESHRUB*GRID$RESHRUB 
 
# Get predicted values for all models. # 
pred1 = predict(hn_shrub_transm_km2, type="state", newdata=GRID) 
pred2 = predict(hn_shrub_km2, type="state", newdata=GRID) 
pred3 = predict(hn_grain_km2, type="state", newdata=GRID) 
pred4 = predict(hn_agp_km2, type="state", newdata=GRID) 
pred5 = predict(hn_asp_km2, type="state", newdata=GRID) 
pred6 = predict(hn_edge_km2, type="state", newdata=GRID) 
pred7 = predict(hn_shrub_grain_km2, type="state", newdata=GRID) 
pred8 = predict(hn_shrub_edge_km2, type="state", newdata=GRID) 
pred9 = predict(hn_shrub_grain_edge_km2, type="state", newdata=GRID) 
pred10 = predict(hn_grain_edge_km2, type="state", newdata=GRID) 
pred11 = predict(hn_agp_edge_km2, type="state", newdata=GRID) 
pred12 = predict(hn_asp_edge_km2, type="state", newdata=GRID) 
pred13 = predict(hn_agp_grain_km2, type="state", newdata=GRID) 
pred14 = predict(hn_agp_grain_edge_km2, type="state", newdata=GRID) 
pred15 = predict(hn_asp_grain_edge_km2, type="state", newdata=GRID) 
pred16 = predict(hn_asp_grain_km2, type="state", newdata=GRID) 
pred17 = predict(hn_dirt_km2, type="state", newdata=GRID) 
pred18 = predict(hn_hwy_km2, type="state", newdata=GRID) 
pred19 = predict(hn_roads_km2, type="state", newdata=GRID) 
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pred20 = predict(hn_transm_km2, type="state", newdata=GRID) 
pred21 = predict(hn_well_km2, type="state", newdata=GRID) 
pred22 = predict(hn_transm_well_km2, type="state", newdata=GRID) 
pred23 = predict(hn_dirt_transm_km2, type="state", newdata=GRID) 
pred24 = predict(hn_grass_grain_km2, type="state", newdata=GRID) 
pred25 = predict(hn_grass_grain_edge_km2, type="state", newdata=GRID) 
pred26 = predict(hn_grass_edge_km2, type="state", newdata=GRID) 
pred27 = predict(hn_km2, type="state", newdata=GRID) 
pred28 = predict(hn_hwy_dirt_km2, type="state", newdata=GRID) 
pred29 = predict(hn_grass_km2, type="state", newdata=GRID) 
pred30 = predict(hn_shrub_dirt_km2, type="state", newdata=GRID) 
pred31 = predict(hn_shrub_dirt_transm_km2, type="state", newdata=GRID) 
pred32 = predict(hn_shrub_hwy_dirt_km2, type="state", newdata=GRID) 
pred33 = predict(hn_shrub_hwy_dirt_transm_km2, type="state", newdata=GRID) 
pred34 = predict(hn_transm_hwy_dirt_km2, type="state", newdata=GRID) 
 
# Convert predicted density to N per quadrat. # 
predD1 = as.vector(pred1$Predicted*12.96) 
predD2 = as.vector(pred2$Predicted*12.96) 
predD3 = as.vector(pred3$Predicted*12.96) 
predD4 = as.vector(pred4$Predicted*12.96) 
predD5 = as.vector(pred5$Predicted*12.96) 
predD6 = as.vector(pred6$Predicted*12.96) 
predD7 = as.vector(pred7$Predicted*12.96) 
predD8 = as.vector(pred8$Predicted*12.96) 
predD9 = as.vector(pred9$Predicted*12.96) 
predD10 = as.vector(pred10$Predicted*12.96) 
predD11 = as.vector(pred11$Predicted*12.96) 
predD12 = as.vector(pred12$Predicted*12.96) 
predD13 = as.vector(pred13$Predicted*12.96) 
predD14 = as.vector(pred14$Predicted*12.96) 
predD15 = as.vector(pred15$Predicted*12.96) 
predD16 = as.vector(pred16$Predicted*12.96) 
predD17 = as.vector(pred17$Predicted*12.96) 
predD18 = as.vector(pred18$Predicted*12.96) 
predD19 = as.vector(pred19$Predicted*12.96) 
predD20 = as.vector(pred20$Predicted*12.96) 
predD21 = as.vector(pred21$Predicted*12.96) 
predD22 = as.vector(pred22$Predicted*12.96) 
predD23 = as.vector(pred23$Predicted*12.96) 
predD24 = as.vector(pred24$Predicted*12.96) 
predD25 = as.vector(pred25$Predicted*12.96) 
predD26 = as.vector(pred26$Predicted*12.96) 
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predD27 = as.vector(pred27$Predicted*12.96) 
predD28 = as.vector(pred28$Predicted*12.96) 
predD29 = as.vector(pred29$Predicted*12.96) 
predD30 = as.vector(pred30$Predicted*12.96) 
predD31 = as.vector(pred31$Predicted*12.96) 
predD32 = as.vector(pred32$Predicted*12.96) 
predD33 = as.vector(pred33$Predicted*12.96) 
predD34 = as.vector(pred34$Predicted*12.96) 
 
# Total population size estimates (lek abundance). # 
POP1 = sum(predD1) 
POP2 = sum(predD2) 
POP3 = sum(predD3) 
POP4 = sum(predD4) 
POP5 = sum(predD5) 
POP6 = sum(predD6) 
POP7 = sum(predD7) 
POP8 = sum(predD8) 
POP9 = sum(predD9) 
POP10 = sum(predD10) 
POP11 = sum(predD11) 
POP12 = sum(predD12) 
POP13 = sum(predD13) 
POP14 = sum(predD14) 
POP15 = sum(predD15) 
POP16 = sum(predD16) 
POP17 = sum(predD17) 
POP18 = sum(predD18) 
POP19 = sum(predD19) 
POP20 = sum(predD20) 
POP21 = sum(predD21) 
POP22 = sum(predD22) 
POP23 = sum(predD23) 
POP24 = sum(predD24) 
POP25 = sum(predD25) 
POP26 = sum(predD26) 
POP27 = sum(predD27) 
POP28 = sum(predD28) 
POP29 = sum(predD29) 
POP30 = sum(predD30) 
POP31 = sum(predD31) 
POP32 = sum(predD32) 
POP33 = sum(predD33) 
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POP34 = sum(predD34) 
 
# Make a data frame of the needed variables, then do for all models. # 
XGRID1 = 

cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$RETRA
NSM) 

XGRID2 = cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2) 
XGRID3 = cbind(rep(1,nrow(GRID)),GRID$GRAIN) 
XGRID4 = cbind(rep(1,nrow(GRID)),GRID$AGP) 
XGRID5 = cbind(rep(1,nrow(GRID)),GRID$ASP) 
XGRID6 = cbind(rep(1,nrow(GRID)),GRID$EDGE) 
XGRID7 = 

cbind(rep(1,nrow(GRID)),GRID$SHRUB,GRID$RESHRUB2,GRID$GRAIN) 
XGRID8 = 

cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$EDGE) 
XGRID9 = 

cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$GRAIN
,GRID$EDGE) 

XGRID10 = cbind(rep(1,nrow(GRID)),GRID$GRAIN,GRID$EDGE) 
XGRID11 = cbind(rep(1,nrow(GRID)),GRID$AGP,GRID$EDGE) 
XGRID12 = cbind(rep(1,nrow(GRID)),GRID$ASP,GRID$EDGE) 
XGRID13 = cbind(rep(1,nrow(GRID)),GRID$AGP,GRID$GRAIN) 
XGRID14 = cbind(rep(1,nrow(GRID)),GRID$AGP,GRID$GRAIN,GRID$EDGE) 
XGRID15 = cbind(rep(1,nrow(GRID)),GRID$ASP,GRID$GRAIN,GRID$EDGE) 
XGRID16 = cbind(rep(1,nrow(GRID)),GRID$ASP,GRID$GRAIN) 
XGRID17 = cbind(rep(1,nrow(GRID)),GRID$REDIRT) 
XGRID18 = cbind(rep(1,nrow(GRID)),GRID$HWY) 
XGRID19 = cbind(rep(1,nrow(GRID)),GRID$ROADS) 
XGRID20 = cbind(rep(1,nrow(GRID)),GRID$RETRANSM) 
XGRID21 = cbind(rep(1,nrow(GRID)),GRID$WELL) 
XGRID22 = cbind(rep(1,nrow(GRID)),GRID$RETRANSM,GRID$WELL) 
XGRID23 = cbind(rep(1,nrow(GRID)),GRID$REDIRT,GRID$RETRANSM) 
XGRID24 = 

cbind(rep(1,nrow(GRID)),GRID$REGRASS,GRID$REGRASS2,GRID$GRAIN) 
XGRID25 = 

cbind(rep(1,nrow(GRID)),GRID$REGRASS,GRID$REGRASS2,GRID$GRAIN,
GRID$EDGE) 

XGRID26 = 
cbind(rep(1,nrow(GRID)),GRID$REGRASS,GRID$REGRASS2,GRID$EDGE) 

XGRID27 = cbind(rep(1,nrow(GRID))) 
XGRID28 = cbind(rep(1,nrow(GRID)),GRID$HWY,GRID$REDIRT) 
XGRID29 = cbind(rep(1,nrow(GRID)),GRID$REGRASS,GRID$REGRASS2) 
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XGRID30 = 
cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$REDIR
T) 

XGRID31 = 
cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$REDIR
T,GRID$RETRANSM) 

XGRID32 = 
cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$HWY,
GRID$REDIRT) 

XGRID33 = 
cbind(rep(1,nrow(GRID)),GRID$RESHRUB,GRID$RESHRUB2,GRID$HWY,
GRID$REDIRT,GRID$RETRANSM) 

XGRID34 = 
cbind(rep(1,nrow(GRID)),GRID$RETRANSM,GRID$HWY,GRID$REDIRT) 

 
#A function to do parametric bootstrap of the total population size to determine variance 

for all models. # 
gridN1 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(RETRANSM)")] 
  sum(12.96*exp(XGRID1%*%(beta))) 
} 
 
gridN2 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)")] 
  sum(12.96*exp(XGRID2%*%(beta))) 
} 
 
gridN3 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(GRAIN)")] 
  sum(12.96*exp(XGRID3%*%(beta))) 
} 
 
gridN4 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(AGP)")] 
  sum(12.96*exp(XGRID4%*%(beta))) 
} 
 
gridN5 = function(fm) { 
  beta = coef(fm) 



 Texas Tech University, Jennifer M. Timmer, May 2012   
 

114 
 

  beta = beta[c("lam(Int)","lam(ASP)")] 
  sum(12.96*exp(XGRID5%*%(beta))) 
} 
 
gridN6 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(EDGE)")] 
  sum(12.96*exp(XGRID6%*%(beta))) 
} 
 
gridN7 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(GRAIN)")] 
  sum(12.96*exp(XGRID7%*%(beta))) 
} 
 
gridN8 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(EDGE)")] 
  sum(12.96*exp(XGRID8%*%(beta))) 
} 
 
gridN9 = function(fm) { 
  beta = coef(fm) 
  beta = 

beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(GRAIN)","lam(E
DGE)")] 

  sum(12.96*exp(XGRID9%*%(beta))) 
} 
 
gridN10 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(GRAIN)","lam(EDGE)")] 
  sum(12.96*exp(XGRID10%*%(beta))) 
} 
 
gridN11 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(AGP)","lam(EDGE)")] 
  sum(12.96*exp(XGRID11%*%(beta))) 
} 
 
gridN12 = function(fm) { 
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  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(ASP)","lam(EDGE)")] 
  sum(12.96*exp(XGRID12%*%(beta))) 
} 
 
gridN13 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(AGP)","lam(GRAIN)")] 
  sum(12.96*exp(XGRID13%*%(beta))) 
} 
 
gridN14 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(AGP)","lam(GRAIN)","lam(EDGE)")] 
  sum(12.96*exp(XGRID14%*%(beta))) 
} 
 
gridN15 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(ASP)","lam(GRAIN)","lam(EDGE)")] 
  sum(12.96*exp(XGRID15%*%(beta))) 
} 
 
gridN16 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(ASP)","lam(GRAIN)")] 
  sum(12.96*exp(XGRID16%*%(beta))) 
} 
 
gridN17 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(REDIRT)")] 
  sum(12.96*exp(XGRID17%*%(beta))) 
} 
 
gridN18 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(HWY)")] 
  sum(12.96*exp(XGRID18%*%(beta))) 
} 
 
gridN19 = function(fm) { 
  beta = coef(fm) 
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  beta = beta[c("lam(Int)","lam(ROADS)")] 
  sum(12.96*exp(XGRID19%*%(beta))) 
} 
 
gridN20 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RETRANSM)")] 
  sum(12.96*exp(XGRID20%*%(beta))) 
} 
 
gridN21 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(WELL)")] 
  sum(12.96*exp(XGRID21%*%(beta))) 
} 
 
gridN22 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RETRANSM)","lam(WELL)")] 
  sum(12.96*exp(XGRID22%*%(beta))) 
} 
 
gridN23 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(REDIRT)","lam(RETRANSM)")] 
  sum(12.96*exp(XGRID23%*%(beta))) 
} 
 
gridN24 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(REGRASS)","lam(REGRASS2)","lam(GRAIN)")] 
  sum(12.96*exp(XGRID24%*%(beta))) 
} 
 
gridN25 = function(fm) { 
  beta = coef(fm) 
  beta = 

beta[c("lam(Int)","lam(REGRASS)","lam(REGRASS2)","lam(GRAIN)","lam(E
DGE)")] 

  sum(12.96*exp(XGRID25%*%(beta))) 
} 
 
gridN26 = function(fm) { 
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  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(REGRASS)","lam(REGRASS2)","lam(EDGE)")] 
  sum(12.96*exp(XGRID26%*%(beta))) 
} 
 
gridN27 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)")] 
  sum(12.96*exp(XGRID27%*%(beta))) 
} 
 
gridN28 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(HWY)","lam(REDIRT)")] 
  sum(12.96*exp(XGRID28%*%(beta))) 
} 
 
gridN29 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(REGRASS)","lam(REGRASS2)")] 
  sum(12.96*exp(XGRID29%*%(beta))) 
} 
 
gridN30 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(REDIRT)")] 
  sum(12.96*exp(XGRID30%*%(beta))) 
} 
 
gridN31 = function(fm) { 
  beta = coef(fm) 
  beta = 

beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(REDIRT)","lam(
RETRANSM)")] 

  sum(12.96*exp(XGRID31%*%(beta))) 
} 
 
gridN32 = function(fm) { 
  beta = coef(fm) 
  beta = 

beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(HWY)","lam(RE
DIRT)")] 

  sum(12.96*exp(XGRID32%*%(beta))) 
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} 
 
gridN33 = function(fm) { 
  beta = coef(fm) 
  beta = 

beta[c("lam(Int)","lam(RESHRUB)","lam(RESHRUB2)","lam(HWY)","lam(RE
DIRT)","lam(RETRANSM)")] 

  sum(12.96*exp(XGRID33%*%(beta))) 
} 
 
gridN34 = function(fm) { 
  beta = coef(fm) 
  beta = beta[c("lam(Int)","lam(RETRANSM)","lam(HWY)","lam(REDIRT)")] 
  sum(12.96*exp(XGRID34%*%(beta))) 
} 
 
# Do a parametric bootstrap to estimate var(N) for each model; it takes awhile for each 

model. # 
pnb.pop1 = parboot(hn_shrub_transm_km2,gridN1,nsim=1000,report=2)  
pnb.pop2 = parboot(hn_shrub_km2,gridN2,nsim=1000,report=2)  
pnb.pop3 = parboot(hn_grain_km2,gridN3,nsim=1000,report=2)  
pnb.pop4 = parboot(hn_agp_km2,gridN4,nsim=1000,report=2)  
pnb.pop5 = parboot(hn_asp_km2,gridN5,nsim=1000,report=2) 
pnb.pop6 = parboot(hn_edge_km2,gridN6,nsim=1000,report=2) 
pnb.pop7 = parboot(hn_shrub_grain_km2,gridN7,nsim=1000,report=2) 
pnb.pop8 = parboot(hn_shrub_edge_km2,gridN8,nsim=1000,report=2) 
pnb.pop9 = parboot(hn_shrub_grain_edge_km2,gridN9,nsim=1000,report=2) 
pnb.pop10 = parboot(hn_grain_edge_km2,gridN10,nsim=1000,report=2) 
pnb.pop11 = parboot(hn_agp_edge_km2,gridN11,nsim=1000,report=2)  
pnb.pop12 = parboot(hn_asp_edge_km2,gridN12,nsim=1000,report=2)  
pnb.pop13 = parboot(hn_agp_grain_km2,gridN13,nsim=1000,report=2)  
pnb.pop14 = parboot(hn_agp_grain_edge_km2,gridN14,nsim=1000,report=2)  
pnb.pop15 = parboot(hn_asp_grain_edge_km2,gridN15,nsim=1000,report=2) 
pnb.pop16 = parboot(hn_asp_grain_km2,gridN16,nsim=1000,report=2) 
pnb.pop17 = parboot(hn_dirt_km2,gridN17,nsim=1000,report=2) 
pnb.pop18 = parboot(hn_hwy_km2,gridN18,nsim=1000,report=2) 
pnb.pop19 = parboot(hn_roads_km2,gridN19,nsim=1000,report=2) 
pnb.pop20 = parboot(hn_transm_km2,gridN20,nsim=1000,report=2) 
pnb.pop21 = parboot(hn_well_km2,gridN21,nsim=1000,report=2)  
pnb.pop22 = parboot(hn_transm_well_km2,gridN22,nsim=1000,report=2)  
pnb.pop23 = parboot(hn_dirt_transm_km2,gridN23,nsim=1000,report=2)  
pnb.pop24 = parboot(hn_grass_grain_km2,gridN24,nsim=1000,report=2)  
pnb.pop25 = parboot(hn_grass_grain_edge_km2,gridN25,nsim=1000,report=2) 
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pnb.pop26 = parboot(hn_grass_edge_km2,gridN26,nsim=1000,report=2) 
pnb.pop27 = parboot(hn_km2,gridN27,nsim=1000,report=2) 
pnb.pop28 = parboot(hn_hwy_dirt_km2,gridN28,nsim=1000,report=2) 
pnb.pop29 = parboot(hn_grass_km2,gridN29,nsim=1000,report=2) 
pnb.pop30 = parboot(hn_shrub_dirt_km2,gridN30,nsim=1000,report=2)  
pnb.pop31 = parboot(hn_shrub_dirt_transm_km2,gridN31,nsim=1000,report=2)  
pnb.pop32 = parboot(hn_shrub_hwy_dirt_km2,gridN32,nsim=1000,report=2)  
pnb.pop33 = parboot(hn_shrub_hwy_dirt_transm_km2,gridN33,nsim=1000,report=2)  
pnb.pop34 = parboot(hn_transm_hwy_dirt_km2,gridN34,nsim=1000,report=2) 
 
# Show the bootstrap results for top model. # 
pnb.pop32 
plot(pnb.pop32) 
 
# Get the parboot SDs and CVs for all models. # 
pop1.boots = attr(pnb.pop1,"t.star") 
sd.boot1 = apply(pop1.boots,2,sd) 
cv.boot1 = sd.boot1/POP1 
 
pop2.boots = attr(pnb.pop2,"t.star") 
sd.boot2 = apply(pop2.boots,2,sd) 
cv.boot2 = sd.boot2/POP2 
 
pop3.boots = attr(pnb.pop3,"t.star") 
sd.boot3 = apply(pop3.boots,2,sd) 
cv.boot3 = sd.boot3/POP3 
 
pop4.boots = attr(pnb.pop4,"t.star") 
sd.boot4 = apply(pop4.boots,2,sd) 
cv.boot4 = sd.boot4/POP4 
 
pop5.boots = attr(pnb.pop5,"t.star") 
sd.boot5 = apply(pop5.boots,2,sd) 
cv.boot5 = sd.boot5/POP5 
 
pop6.boots = attr(pnb.pop6,"t.star") 
sd.boot6 = apply(pop6.boots,2,sd) 
cv.boot6 = sd.boot6/POP6 
 
pop7.boots = attr(pnb.pop7,"t.star") 
sd.boot7 = apply(pop7.boots,2,sd) 
cv.boot7 = sd.boot7/POP7 
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pop8.boots = attr(pnb.pop8,"t.star") 
sd.boot8 = apply(pop8.boots,2,sd) 
cv.boot8 = sd.boot8/POP8 
 
pop9.boots = attr(pnb.pop9,"t.star") 
sd.boot9 = apply(pop9.boots,2,sd) 
cv.boot9 = sd.boot9/POP9 
pop10.boots = attr(pnb.pop10,"t.star") 
sd.boot10 = apply(pop10.boots,2,sd) 
cv.boot10 = sd.boot10/POP10 
 
pop11.boots = attr(pnb.pop11,"t.star") 
sd.boot11 = apply(pop11.boots,2,sd) 
cv.boot11 = sd.boot11/POP11 
 
pop12.boots = attr(pnb.pop12,"t.star") 
sd.boot12 = apply(pop12.boots,2,sd) 
cv.boot12 = sd.boot12/POP12 
 
pop13.boots = attr(pnb.pop13,"t.star") 
sd.boot13 = apply(pop13.boots,2,sd) 
cv.boot13 = sd.boot13/POP13 
 
pop14.boots = attr(pnb.pop14,"t.star") 
sd.boot14 = apply(pop14.boots,2,sd) 
cv.boot14 = sd.boot14/POP14 
 
pop15.boots = attr(pnb.pop15,"t.star") 
sd.boot15 = apply(pop15.boots,2,sd) 
cv.boot15 = sd.boot15/POP15 
 
pop16.boots = attr(pnb.pop16,"t.star") 
sd.boot16 = apply(pop16.boots,2,sd) 
cv.boot16 = sd.boot16/POP16 
 
pop17.boots = attr(pnb.pop17,"t.star") 
sd.boot17 = apply(pop17.boots,2,sd) 
cv.boot17 = sd.boot17/POP17 
 
pop18.boots = attr(pnb.pop18,"t.star") 
sd.boot18 = apply(pop18.boots,2,sd) 
cv.boot18 = sd.boot18/POP18 
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pop19.boots = attr(pnb.pop19,"t.star") 
sd.boot19 = apply(pop19.boots,2,sd) 
cv.boot19 = sd.boot19/POP19 
 
pop20.boots = attr(pnb.pop20,"t.star") 
sd.boot20 = apply(pop20.boots,2,sd) 
cv.boot20 = sd.boot20/POP20 
 
pop21.boots = attr(pnb.pop21,"t.star") 
sd.boot21 = apply(pop21.boots,2,sd) 
cv.boot21 = sd.boot21/POP21 
 
pop22.boots = attr(pnb.pop22,"t.star") 
sd.boot22 = apply(pop22.boots,2,sd) 
cv.boot22 = sd.boot22/POP22 
 
pop23.boots = attr(pnb.pop23,"t.star") 
sd.boot23 = apply(pop23.boots,2,sd) 
cv.boot23 = sd.boot23/POP23 
 
pop24.boots = attr(pnb.pop24,"t.star") 
sd.boot24 = apply(pop24.boots,2,sd) 
cv.boot24 = sd.boot24/POP24 
 
pop25.boots = attr(pnb.pop25,"t.star") 
sd.boot25 = apply(pop25.boots,2,sd) 
cv.boot25 = sd.boot25/POP25 
 
pop26.boots = attr(pnb.pop26,"t.star") 
sd.boot26 = apply(pop26.boots,2,sd) 
cv.boot26 = sd.boot26/POP26 
 
pop27.boots = attr(pnb.pop27,"t.star") 
sd.boot27 = apply(pop27.boots,2,sd) 
cv.boot27 = sd.boot27/POP27 
 
pop28.boots = attr(pnb.pop28,"t.star") 
sd.boot28 = apply(pop28.boots,2,sd) 
cv.boot28 = sd.boot28/POP28 
 
pop29.boots = attr(pnb.pop29,"t.star") 
sd.boot29 = apply(pop29.boots,2,sd) 
cv.boot29 = sd.boot29/POP29 
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pop30.boots = attr(pnb.pop30,"t.star") 
sd.boot30 = apply(pop30.boots,2,sd) 
cv.boot30 = sd.boot30/POP30 
 
pop31.boots = attr(pnb.pop31,"t.star") 
sd.boot31 = apply(pop31.boots,2,sd) 
cv.boot31 = sd.boot31/POP31 
 
pop32.boots = attr(pnb.pop32,"t.star") 
sd.boot32 = apply(pop32.boots,2,sd) 
cv.boot32 = sd.boot32/POP32 
 
pop33.boots = attr(pnb.pop33,"t.star") 
sd.boot33 = apply(pop33.boots,2,sd) 
cv.boot33 = sd.boot33/POP33 
 
pop34.boots = attr(pnb.pop34,"t.star") 
sd.boot34 = apply(pop34.boots,2,sd) 
cv.boot34 = sd.boot34/POP34 
 
# Final Estimates for top model (model32), shrub+hwy+dirt model. # 
POP32 
sd.boot32 
cv.boot32 
 
# Export pred32 frame to a CSV file and multiply predicted values and upper and lower 

CI's by 12.96 and use delta method for SE. # 
write.table(pred32,file="C:/ 

prediction2.csv",append=FALSE,sep=",",row.names=FALSE,col.names=TRUE) 
 
#Combine Grid file with prediction file and add to GIS, project, and save as data layer; 

then join with the quadrat shapefile to make density map for the quadrats.# 
 
# Get covariate values to make a graph predicting lek density. # 
GRAPH = read.table("C:/graph.csv",header=TRUE,sep=",") 
GRAPH$REDIRT = (GRAPH$DIRT-mean.dirt)/std.dirt 
GRAPH$RESHRUB = (GRAPH$SHRUB-mean.shrub)/std.shrub 
GRAPH$RESHRUB2 = GRAPH$RESHRUB*GRAPH$RESHRUB 
 
# Predict density values for graph. # 
pred.graph = predict(topfits, type="state", newdata=GRAPH, appendData=TRUE) 
pred.graph$predicted.abund = pred.graph$Predicted*12.96 
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# Export pred.graph to a csv file. # 
write.table(pred.graph,file="C:/predgraph2.csv",append=FALSE,sep=",",row.names=FA

LSE,col.names=TRUE) 
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APPENDIX C 

 

PREDICTED LEK DENSITY MAPS 
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Figure C1. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Andrews and Gaines counties, Texas, USA.  Predictions based on a hierarchical distance 
sampling model of percent shrubland patches and paved and unpaved road densities 
(km/km2). 
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Figure C2. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Cochran, Hockley, Terry, and Yoakum counties, Texas, USA.  Predictions based on a 
hierarchical distance sampling model of percent shrubland patches and paved and 
unpaved road densities (km/km2). 
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Figure C3. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Bailey, Cochran, and Lamb counties, Texas, USA.  Predictions based on a hierarchical 
distance sampling model of percent shrubland patches and paved and unpaved road 
densities (km/km2). 
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Figure C4. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Castro, Deaf Smith, Oldham, Randall, and Swisher counties, Texas, USA.   Predictions 
based on a hierarchical distance sampling model of percent shrubland patches and paved 
and unpaved road densities (km/km2). 
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Figure C5. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Carson and Moore counties, Texas, USA.  Predictions based on a hierarchical distance 
sampling model of percent shrubland patches and paved and unpaved road densities 
(km/km2). 
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Figure C6. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Donley, Gray, Hemphill, Roberts, and Wheeler counties, Texas, USA.  Predictions based 
on a hierarchical distance sampling model of percent shrubland patches and paved and 
unpaved road densities (km/km2). 
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Figure C7. Predicted lesser prairie-chicken (LPC) lek density for 12.96 km2 quadrats in 
Hemphill, Lipscomb, Ochiltree, and Roberts counties, Texas, USA.  Predictions based on 
a hierarchical distance sampling model of percent shrubland patches and paved and 
unpaved road densities (km/km2). 


